
MATLAB Release Notes

 MATLAB Release Notes

Contents
Summary by Version. 7

Version 7.2 (R2006a) MATLAB . 11

Desktop Tools and Development Environment,
MATLAB Version 7.2 (R2006a) . 13

Mathematics, MATLAB Version 7.2 (R2006a) 27

Data Analysis, MATLAB Version 7.2 (R2006a) 29

Programming, MATLAB Version 7.2 (R2006a) 31

Graphics and 3-D Visualization,
MATLAB Version 7.2 (R2006a) . 39

Creating Graphical User Interfaces (GUIs),
MATLAB Version 7.2 (R2006a) . 41

External Interfaces/API, MATLAB Version 7.2 (R2006a) . . . 43

Version 7.1 (R14SP3) MATLAB . 57

Desktop Tools and Development Environment,
MATLAB Version 7.1 (R14SP3) . 58

Mathematics, MATLAB Version 7.1 (R14SP3) 73

Data Analysis, MATLAB Version 7.1 (R14SP3) 77

Programming, MATLAB Version 7.1 (R14SP3) 79

Graphics and 3-D Visualization,
MATLAB Version 7.1 (R14SP3) . 87
iii

iv Contents
Creating Graphical User Interfaces (GUIs),
MATLAB Version 7.1 (R14SP3) . 89

External Interfaces/API, MATLAB Version 7.1 (R14SP3) . . . 91

Version 7.0.4 (R14SP2) MATLAB . 97

Desktop Tools and Development Environment,
MATLAB Version 7.0.4 (R14SP2) . 99

Mathematics, MATLAB Version 7.0.4 (R14SP2) 105

Programming, MATLAB Version 7.0.4 (R14SP2) 107

Graphics and 3-D Visualization,
MATLAB Version 7.0.4 (R14SP2) . 113

Creating Graphical User Interfaces (GUIs),
MATLAB Version 7.0.4 (R14SP2) . 115

External Interfaces/API, MATLAB Version 7.0.4 (R14SP2) . 117

Version 7.0.1 (R14SP1) MATLAB 119

Desktop Tools and Development Environment,
MATLAB Version 7.0.1 (R14SP1) . 121

Mathematics, MATLAB Version 7.0.1 (R14SP1) 127

Programming, MATLAB Version 7.0.1 (R14SP1) 131

Graphics, MATLAB Version 7.0.1 (R14SP1) 137

Creating Graphical User Interfaces (GUIs),
MATLAB Version 7.0.1 (R14SP1) . 139

External Interfaces/API, MATLAB Version 7.0.1 (R14SP1) . 141

Version 7 (R14) MATLAB . 145

Desktop Tools and Development Environment,
MATLAB Version 7 (R14) . 147

Mathematics, MATLAB Version 7 (R14) 175

Programming, MATLAB Version 7 (R14) 201

Graphics and 3-D Visualization, MATLAB Version 7 (R14) 241

Creating Graphical User Interfaces (GUIs),
MATLAB Version 7 (R14) . 249

External Interfaces/API, MATLAB Version 7 (R14) 255

Version 6.5.1 (R13SP1) MATLAB 267

Fixed Bugs . 277

Compatibility Considerations . 289

Compatibility Summary for MATLAB. 291

Version 7.2 (R2006a) Compatibility Summary
for MATLAB . 292

Version 7.1 (R14SP3) Compatibility Summary
for MATLAB . 294

Version 7.04 (R14SP2) Compatibility Summary
for MATLAB . 296

Version 7.01 (R14SP1) Compatibility Summary
for MATLAB . 298
v

vi Contents
Version 7 (R14) Compatibility Summary
for MATLAB . 300

Version 6.5.1 (R13SP3) Compatibility Summary
for MATLAB . 305

MATLAB Release Notes
Summary by Version

This table provides quick access to what’s new in each version. For
clarification, see About Release Notes.

About Release Notes
Use release notes when upgrading to a newer version to learn about new
features and changes, and the potential impact on your existing files and
practices. Release notes are also beneficial if you use or support multiple
versions.

Version
(Release)

New Features
and Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Latest Version
V7.2 (R2006a)

Yes
Details

Yes
Summary

Bug Reports
at Web site

Printable Release
Notes: PDF

V7.2 product
documentation

V7.1 (R14SP3) Yes
Details

Yes
Summary

Bug Reports
at Web site

No

V7.0.4 (R14SP2) Yes
Details

Yes
Summary

Bug Reports
at Web site

No

V7.0.1 (R14SP1) Yes
Details

Yes
Summary

Fixed bugs No

V7 (R14) Yes
Details

Yes
Summary

Fixed bugs No

V6.5.1 (R13SP1) Yes
Details

Yes
Summary

Fixed bugs V6.5.1 product
documentation
7

Summary by Version

8

If you are not upgrading from the most recent previous version, review release
notes for all interim versions, not just for the version you are installing. For
example, when upgrading from V1.0 to V1.2, review the New Features and
Changes, Version Compatibility Considerations, and Bug Reports for V1.1 and
V1.2.

New Features and Changes
These include

• New functionality

• Changes to existing functionality

• Changes to system requirements (complete system requirements for the
current version are at the MathWorks Web site)

• Any version compatibility considerations associated with each new feature
or change

Version Compatibility Considerations
When a new feature or change introduces a known incompatibility between
versions, its description includes a Compatibility Considerations subsection
that details the impact. For a list of all new features and changes that have
compatibility impact, see the “Compatibility Summary for MATLAB” on
page -291.

Compatibility issues that become known after the product has been released
are added to Bug Reports at the MathWorks Web site. Because bug fixes can
sometimes result in incompatibilities, also review fixed bugs in Bug Reports for
any compatibility impact.

Fixed Bugs and Known Problems
MathWorks Bug Reports is a user-searchable database of known problems,
workarounds, and fixes. The MathWorks updates the Bug Reports database as
new problems and resolutions become known, so check it as needed for the
latest information.

Access Bug Reports at the MathWorks Web site using your MathWorks
Account. If you are not logged in to your MathWorks Account when you link to
Bug Reports, you are prompted to log in or create an account. You then can
view bug fixes and known problems for R14SP2 and more recent releases.

MATLAB Release Notes
The Bug Reports database was introduced for R14SP2 and does not include
information for prior releases. You can access a list of bug fixes made in prior
versions via the links in the summary table.

Related Documentation at Web Site

Printable Release Notes (PDF). You can print release notes from the PDF version,
located at the MathWorks Web site. The PDF version does not support links to
other documents or to the Web site, such as to Bug Reports. Use the
browser-based version of release notes for access to all information.

Product Documentation. At the MathWorks Web site, you can access complete
product documentation for the current version and some previous versions, as
noted in the summary table.
9

Summary by Version

10

MATLAB Release Notes
Version 7.2 (R2006a) MATLAB

This table summarizes what’s new in Version 7.2 (R2006a):

New features and changes introduced in this version are organized by these
areas:

• Desktop Tools and Development Environment, MATLAB Version 7.2
(R2006a)

• Mathematics, MATLAB Version 7.2 (R2006a)

• Data Analysis, MATLAB Version 7.2 (R2006a)

• Programming, MATLAB Version 7.2 (R2006a)

• Graphics and 3-D Visualization, MATLAB Version 7.2 (R2006a)

• Creating Graphical User Interfaces (GUIs), MATLAB Version 7.2 (R2006a)

• External Interfaces/API, MATLAB Version 7.2 (R2006a)

New Features
and Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related Documentation
at Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations in
descriptions of new
features and
changes. See also
Summary.

Bug Reports
at Web site

Printable Release Notes:
PDF

V7.2 product
documentation
11

12

MATLAB Release Notes
Desktop Tools and Development Environment, MATLAB
Version 7.2 (R2006a)

New features and changes introduced in this version are organized by these
topics:

• Startup and Shutdown

• Desktop

• Running Functions—Command Window and Command History

• Help

• Workspace, Search Path, and File Operations

• Editing and Debugging M-Files

• Tuning and Managing M-Files

• Publishing Results

• Source Control Interface

Startup and Shutdown
New features and changes introduced in Version 7.2 (R2006a) are described
here.

Installation Directory Structure on Windows
The installation directory structure on Windows platforms is slightly different
than in previous versions. By default, the structure now includes a general
MATLAB top level directory, with a subdirectory for R2006a. The MATLAB® root
directory, as returned by the matlabroot function, is now of the form in this
example

D:\Applications\MATLAB\R2006a

In previous versions, the top level directory included the version number, so the
MATLAB root directory, as returned by the matlabroot function, was of the
form in this example

D:\Applications\MATLAB 7.1

Compatibility Considerations. If you relied on the explicit MATLAB root directory
structure in your code, change it to reflect the new structure including the top
level MATLAB directory. The matlabroot function might be useful.
13

Desktop Tools and Development Environment, MATLAB Version 7.2 (R2006a)

14
Error Log Reporting
If MATLAB experiences a segmentation violation, it generates an error log.
Upon the next startup, MATLAB prompts you to e-mail the error log to The
MathWorks. The MathWorks uses the log to work on resolving the problem.
When you send a log, you receive a confirmation e-mail and will only receive
further e-mails if The MathWorks develops a fix or workaround for the
problem.

There are some situations where the Error Log Reporter will not open, for
example when you start MATLAB with a -r option or run in deployed mode. If
you experience segmentation violations but do not see the Error Log Reporter
on subsequent startups, you can instead e-mail logs by following the
instructions at the end of the segmentation violation message in the Command
Window.

JVM Updated for 64-Bit Linux Platforms
The Java Virtual Machine (JVM) version for 64-bit Linux platforms that
MATLAB uses is now Sun 1.5.0_04.

Desktop
New features and changes introduced in Version 7.2 (R2006a) are described
here.

Preferences Reorganized and New Keyboard Pane Added to Support
Command Window and Editor/Debugger
Preferences includes a new pane, Keyboard, for setting key bindings, tab
completion, and delimiter matching preferences for the Command Window and
Editor/Debugger. Most of these preferences were previously located in the
preference panes for the Command Window or Editor/Debugger.

Compatibility Considerations. You no longer access keyboard and indenting
preferences for the Command Window and Editor/Debugger from the
component preferences, but rather from the new Keyboard preferences. In
addition, some preferences that were set separately for these components are
now shared. For details about the changes, see Keyboard and Indenting
Command Window Preferences Reorganized, and Keyboard and Indenting
Editor/Debugger Preferences Reorganized.

MATLAB Release Notes
Open All Desktop Tools from Desktop Menu
You can now open (and close) all desktop tools from the Desktop menu. In
previous versions, you could not access document-based tools from the Desktop
menu. The document-based desktop tools are: Editor/Debugger, Figures, Array
Editor, and Web Browser.

Access Login Renamed to MathWorks Account
Use Help -> Web Resources -> MathWorks Account menu items to go to your
MathWorks Account if you are registered, or to register online. MathWorks
Account was previously called Access Login.

Running Functions—Command Window and
Command History
New features and changes introduced in Version 7.2 (R2006a) are described
here.

Keyboard and Indenting Command Window Preferences Reorganized
The Command Window Keyboard and Indenting preference pane was removed.
The tab size preference is now on the Command Window preference pane. The
tab completion, keybinding, and parentheses matching preferences were
moved to the new Keyboard preferences pane. The parentheses matching
preferences are now called delimiter matching preferences and are shared with
the Editor/Debugger.
15

Desktop Tools and Development Environment, MATLAB Version 7.2 (R2006a)

16
Help
New features and changes introduced in Version 7.2 (R2006a) are described
here.

help for Model Files
You can now use the help function to get the complete description for
MDL-files. For example, run

help f14_dap.mdl

and MATLAB displays the description of the Simulink® F-14 Digital Autopilot
High Angle of Attack Mode model, as defined in its Model Properties ->
Description:

Multirate digital pitch loop control for F-14 control design
demonstration.

Workspace, Search Path, and File Operations
New features and changes introduced in Version 7.2 (R2006a) are described
here.

toolboxdir function added
The toolboxdir function returns the absolute pathname to the specified
toolbox. It is particularly useful with the MATLAB Compiler because the
toolbox root directory is different than in MATLAB.

MATLAB Release Notes
Editing and Debugging M-Files
New features and changes introduced in Version 7.2 (R2006a) are

• Tab Completion for Completing Function and Variable Names

• Go Menu Added; Bookmark and Go To Items Moved from Edit Menu to Go
Menu

• Navigate Back and Forward in Files

• Keyboard and Indenting Editor/Debugger Preferences Reorganized

• M-Lint Automatic Code Analyzer Checks for Problems and Suggests
Improvements

• Debugging Changes

• Cell Mode On by Default—Shows Cell Toolbar and Possibly Horizontal Lines
and Yellow Highlighting; Cell Information Bar and Button Added

• Lines Between Cells

• Cell Titles in Bold Preference Removed

Tab Completion for Completing Function and Variable Names
You can now use tab completion in the Editor/Debugger to complete function
names and variable names that are in the current workspace. When you type
the first few characters of a function or variable name and press the Tab key,
the Editor/Debugger displays a list of all function and variable names that
begin with those letters, from which you choose one.

It operates the same way as the existing tab completion feature in the
Command Window, with the exception that Editor/Debugger tab completion
does not support completion of file and path names. To use tab completion,
select the Keyboard preference for it.
17

Desktop Tools and Development Environment, MATLAB Version 7.2 (R2006a)

18
Go Menu Added; Bookmark and Go To Items Moved from Edit Menu to Go
Menu

• To set, clear, and navigate to bookmarks, use the menu items in the new Go
menu, which were previously located in the Edit menu.

• The Go To feature for navigating to line numbers, functions in M-files, and
cells has moved to the new Go menu. It was previously located in the Edit
menu.

Compatibility Considerations. Use the new Go menu items instead of Edit ->
Bookmark features and Edit -> Go To.

Navigate Back and Forward in Files
Use Go -> Back (and Go -> Forward) to go to lines you previously edited or
navigated to in a file, in the sequence you accessed them. The main benefit of
this feature is going directly to lines of interest. As an alternative to the menu
items, use the Back and Forward buttons on the toolbar.

Keyboard and Indenting Editor/Debugger Preferences Reorganized
The Editor/Debugger Keyboard and Indenting preference pane was renamed
to Tab preferences, and keybinding and parentheses matching preferences
were moved to the new Keyboard preferences pane. The parentheses matching
preferences are now called delimiter matching preferences and are shared with
the Command Window.

MATLAB Release Notes
M-Lint Automatic Code Analyzer Checks for Problems and Suggests
Improvements
The M-Lint code analyzer, now built into the Editor/Debugger, continuously
checks your code for problems and recommends modifications to maximize
performance and maintainability. It performs the same analysis as the existing
M-Lint Code Check report, but also provides these features

• Indicates the problem lines and associated M-Lint messages directly in the
M-file rather than in a separate report.

• Identifies (underlines) code fragments within a line that result in M-Lint
messages.

• Distinguishes messages that report errors (red) from warnings and
suggestions (orange).

• Continually analyzes and updates messages as your work so you can see the
effect of your changes without having to save the M-file or rerun an M-Lint
report.

To use or turn off M-Lint in the Editor/Debugger, select File -> Preferences ->
Editor/Debugger -> Language, and for Language, select M. Under Syntax,
select Enable M-Lint messages, or clear the check box to turn it off. Use the
19

Desktop Tools and Development Environment, MATLAB Version 7.2 (R2006a)

20
associated dropdown list to specify the types of code fragments that you want
M-Lint to underline, for example, Underline warnings and errors.

Debugging Changes

• The dbstop function now allows you to stop at, (not in), a non M-file, allowing
you to view code and variables near it in your M-file. For example, if you
want to stop at the point in your M-file myfile.m where the built-in clear
function is called, run dbstop in clear; mymfile. Use this feature with
caution because the debugger will stop in M-files it uses for running and
debugging if they contain the non M-file, and then some debugging features
do not operate as expected, such as typing help functionname at the K>>
prompt.

Cell Mode On by Default—Shows Cell Toolbar and Possibly Horizontal
Lines and Yellow Highlighting; Cell Information Bar and Button Added
Cell mode, a useful feature in the Editor/Debugger for publishing results and
rapid code iteration, is now enabled by default. An M-file cell is denoted by a %%
at the start of a line. Any M-file that contains %% at the start of a line will be
interpreted as including cells. The Editor/Debugger will reflect the cell toolbar
state and the cell display preferences, such as yellow highlighting of the
current cell and gray horizontal lines between cells.

For quick access to information about using cells in M-files, use the new
information button on the cell toolbar.

MATLAB Release Notes
%% at the start of
a line denotes a
cell, used for
publishing or
rapid code
iteration. The
current cell is
highlighted in
yellow.

Example of M-file
with cells
published to
HTML.

Includes source
code and output.

Supported
formats are:
HTML, Word,
PowerPoint,
LaTeX, and XML.
21

Desktop Tools and Development Environment, MATLAB Version 7.2 (R2006a)

22
If you do not want cell mode enabled, select Cell -> Disable Cell Mode.

MATLAB remembers the cell mode between sessions. If cell mode is disabled
when you quit MATLAB, it will be disabled the next time you start MATLAB,
and the converse is true.

In MATLAB Version 7.2, the first time you open an M-file in the
Editor/Debugger, the cell toolbar appears. If the M-file contains a line
beginning with %%, an information bar appears below the cell toolbar, providing
links for details about cell mode. To dismiss the information bar, click the close
box on the right side of the bar. To hide the cell toolbar, right-click the toolbar
and select Cell Toolbar from the context menu.

Compatibility Considerations. In previous versions, cell mode was off by default.
Users unfamiliar with cell mode will see the cell toolbar and might see yellow
highlighting or horizontal rules in M-files that contain %% at the start of a line.
If you used the %% symbols at the start of a line in M-files for a purpose other
than denoting M-file cells, consider replacing the %% symbols with a different
indicator, or keep cell mode disabled.

Lines Between Cells
You can set an Editor/Debugger display preference, Show lines between cells,
to add a faint gray rule above each cell in an M-file. The line does not print or
appear in the published M-file.

Cell Titles in Bold Preference Removed
Previous versions included an Editor/Debugger display preference to Show
bold cell titles. When cleared, cell titles appeared in plain text, rather than
bold text. This is no longer a preference you can set—all cell titles now appear
in bold text.

Tuning and Managing M-Files
New features and changes introduced in Version 7.2 (R2006a) are

• M-Lint and mlint Enhancements and Changes

• Profiling Enhancements

• Visual Directory View Removed from Current Directory Browser

MATLAB Release Notes
M-Lint and mlint Enhancements and Changes
The M-Lint code analyzer is now built into the Editor/Debugger where it
continuously checks your code for problems and recommends modifications to
maximize performance and maintainability. For details, see .

Compatibility Considerations. The mlint function has changed slightly to support
its use in the Editor/Debugger. Specifically, the results returned from mlint
with the -id option are of a different form than for previous versions. If you rely
on the exact values, you will have to make modifications.

For example, this is the form of a message returned in R2006a
L 22 (C 1-9) 2:AssignmentNotUsed : The value assigned here to
variable 'nothandle' might never be used.

while this is the form of the message from R14SP3
22 (C 1-9) InefficientUsage:AssignmentNotUsed : The value assigned
here to variable 'nothandle' might never be used.

There is now a numeric identifier, followed by the category, for example
2:AssignmentNotUsed

If you do rely on the exact values, note that there have been very few changes
to the message text itself. For example, both R14SP3 and R2006a use the same
text:
The value assigned here to variable 'nothandle' might never be used.

Because of improvements being made to mlint, the values returned using the
-id option are expected to change in the next version as well, particularly the
numeric identifier and category form. Do not rely on the exact values returned
using mlint with the -id option or you will probably need to make
modifications.

Profiling Enhancements

nohistory Option Added to profile Function. Use the new -nohistory option after
having previously set the -history option to disable further recording of
history (exact sequence of function calls). All other profiling statistics continue
to accumulate.

Accuracy Improved. The Profiler provides more accurate accounting. The total
time you see with the Profiler GUI now matches total wall clock time from
23

Desktop Tools and Development Environment, MATLAB Version 7.2 (R2006a)

24
when you started profiling until you stopped profiling. Overhead associated
with the Profiler itself is now applied evenly.

Statistics for Recursive Functions. The profile function now gathers and reports
time for recursive functions in the FunctionTable’s TotalTime for the function.
In previous versions, profile attempted to break out TotalRecursiveTime,
which was not always accounted for accurately. The value for
TotalRecursiveTime in FunctionTable is no longer used.

This change is also reflected in the Profiler GUI reports.

PartialData Reported in Results, AcceleratorMessages Removed. The FunctionTable
now includes the PartialData value. If the value is 1, it means the function
was modified during profiling, for example by being edited or cleared, so data
was only collected up until the point it was modified.

In previous versions, FunctionTable included AcceleratorMessages although
it was not used. AcceleratorMessages is no longer included.

Visual Directory View Removed from Current Directory Browser
The Visual Directory view was removed from the Current Directory browser.

Compatibility Considerations. Most of the features it provided are accessible from
the Current Directory browser standard view.

Publishing Results
New features and changes introduced in Version 7.2 (R2006a) are described
here.

Insert Italic Text Markup
You can now make designated text comments in cells appear italicized in the
published output. Use Cell -> Insert Text Markup -> Italic Text, or use the
equivalent markup symbols, undescores, as in _SAMPLE ITALIC TEXT_.

publish Function has New catchError Option
The publish function has a new catchError option that allows you to continue
or stop publishing if the M-file contains an error.

MATLAB Release Notes
Source Control Interface
New features and changes introduced in Version 7.2 (R2006a) are described
here.

PVCS Source Control System Name Change
The PVCS source control system (from Merant) now has a new name,
ChangeMan (from Serena), and the MATLAB source control interface on UNIX
platforms reflects the change.

If you use ChangeMan on UNIX platforms, the cmopts value returned for it is
pvcs. If you use PVCS, select ChangeMan in the Source Control Preferences
pane.

Compatibility Considerations. PVCS users on UNIX platforms formerly selected
PVCS in the Source Control Preferences pane. Now, PVCS users select
ChangeMan instead.
25

Desktop Tools and Development Environment, MATLAB Version 7.2 (R2006a)

26

MATLAB Release Notes
Mathematics, MATLAB Version 7.2 (R2006a)
New features and changes introduced in this version are:

• New Library CHOLMOD for Sparse Cholesky Factorization

• New Solver for State-Dependent DDEs

• Upgrade to BLAS Libraries

• New Function for Integer Division

• New Input to gallery Function

• Improved Algorithm for expm

• More Efficient condest for Sparse Matrices

• accumarray Accepts Cell Vector Input

New Library CHOLMOD for Sparse Cholesky
Factorization
For sparse matrices, MATLAB now uses CHOLMOD version 1.0 to compute
the Cholesky factor. CHOLMOD is a set of routines offering improved
performance in factorizing sparse symmetric positive definite matrices. See the
function reference pages for chol, spparms and mldivide for more information
on how CHOLMOD is used by MATLAB.

New Solver for State-Dependent DDEs
In this release, MATLAB provides a second solver function, ddesd, in addition
to the existing dde23 function, for delay differential equations (DDEs). This
new solver is for use on equations that have general delays. You supply a
function in the input argument list that will return the vector of delays to be
used by the solver. See the function reference page for ddesd, and “Initial Value
Problems for DDEs” in the MATLAB Mathematics documentation for more
information.

Upgrade to BLAS Libraries
MATLAB now uses new versions of the Basic Linear Algebra Subroutine
(BLAS) libraries. For Intel processors on Windows and Linux platforms,
MATLAB supports the Math Kernel Library (MKL) version 8.0.1. For AMD
27

Mathematics, MATLAB Version 7.2 (R2006a)

28
processors on Linux platforms, MATLAB uses the AMD Core Math Library
(ACML) version 2.7.

New Function for Integer Division
The new idivide function provides division similar to A./B on integers except
that fractional quotients are rounded to integers according to a specified
rounding mode.

New Input to gallery Function
The gallery function has a new, optional input argument called classname.
The classname input is a quoted string that must be either 'single' or
'double' When you specify a classname argument in the call to gallery,
MATLAB produces a matrix of that class.

Improved Algorithm for expm
The expm function now uses an improved algorithm to compute a matrix
exponential. This algorithm often requires fewer matrix multiplications.

More Efficient condest for Sparse Matrices
The condest function handles sparse matrices more efficiently when
estimating a 1-norm condition number.

accumarray Accepts Cell Vector Input
The accumarray function now accepts a cell vector as the subs input. This
vector can have one or more elements, each element a vector of positive
integers. All the vectors must have the same length. In this case, subs is
treated as if the vectors formed columns of an index matrix.

MATLAB Release Notes
Data Analysis, MATLAB Version 7.2 (R2006a)
New features and changes introduced in this version are

• Data Analysis Collection Revised and Expanded

• Reference Pages for timeseries and tscollection Objects

• Text Files Can Be Imported In Time Series Tools

• Linux 64 Platform Fully Enabled for Time Series Tools

Data Analysis Collection Revised and Expanded
In this release, the Data Analysis collection has been thoroughly revised to
improve content organization and flow. In addition, most examples have been
updated and streamlined.

Reference Pages for timeseries and tscollection
Objects
Detailed reference pages are now available for timeseries and tscollection
objects, properties, and methods. You can access these reference pages in the
Help contents, under MATLAB Functions — By Category.

Text Files Can Be Imported In Time Series Tools
In Time Series Tools, you can now use the Import Wizard to import data from
text files, such as .csv, .dat, and .txt.

Linux 64 Platform Fully Enabled for Time Series
Tools
Time Series Tools is now fully enabled on the Linux 64 platform.

Compatibility Considerations
On the Linux 64 platform, you no longer need to manually enable the Time
Series Tools feature before starting Time Series Tools (as in MATLAB 7.1).
29

Data Analysis, MATLAB Version 7.2 (R2006a)

30

MATLAB Release Notes
Programming, MATLAB Version 7.2 (R2006a)
New features and changes introduced in this version are:

• Larger Data Sets with 64-Bit Windows XP

• Using avifile and movie2avi on Windows XP 64

• Regular Expressions

• Setting Environment Variables

• issorted Support for Cell Arrays

• XLS Functions Support More Formats

• Archiving Functions Accept Files on Path and ~/

• sendmail No Longer Requires ASCII Messages

• MATLAB Warns on Invalid Input to str2func

• I/O Functions Can Specify and Use Character Encoding Schemes

• Character Encoding Conversion For Native-Encoded Files

Larger Data Sets with 64-Bit Windows XP
MATLAB support for Windows XP 64-bit edition enables you to handle much
larger data sets. There remains a 2 GB limit on each variable, but you can store
many more such variables in memory at one time.

Using avifile and movie2avi on Windows XP 64

Note You must change the compression setting if you use the avifile or
movie2avi function on Windows XP 64.

MATLAB currently defaults to using Indeo codecs to compress video frames
when using avifile/addframe or movie2avi. If you attempt to use avifile
and addframe, or movie2avi on a Windows XP 64-bit platform without
specifying the compression type, you will see an error message indicating the
codec was not found. Nondefault settings must be explicitly passed in when
using these functions on Windows XP 64 because Microsoft does not provide
Indeo codecs on this platform.

This issue does not affect 32-bit Windows XP installations.
31

Programming, MATLAB Version 7.2 (R2006a)

32
Compatibility Considerations
To work around this issue, do the following:

1 Explicitly specify no compression when creating the avifile object or when
calling movie2avi. Two examples of this are

aviobj = avifile('myvideo.avi', 'compression', 'none');

movie2avi(mov, 'myvideo.avi', 'compression', 'none');

2 Specify a codec for a compression that is installed. The ones that are
included with Windows XP 64 are

• IYUV — Intel YUV codec (c:\winnt\system32\iyuv_32.dll)

• MRLE — Microsoft RLE codec (c:\winnt\system32\msrle32.dll)

• MSVC — Microsoft Video 1 codec (c:\winnt\system32\msvidc32.dll)

For example, to use the Intel YUV codec, use the four-CC code:

aviobj = avifile('myvideo.avi', 'compression', 'IYUV');

Other codecs can be found at http://fourcc.org.

Note there are restrictions with some codecs. For example, some codecs can
only be used with grayscale images.

MATLAB Release Notes
Regular Expressions
MATLAB 7.2 introduces the following new features for regular expressions in
MATLAB. For more information on these features, see “Regular Expressions”
in the MATLAB Programming documentation.

New Features

• Dynamic regular expressions — You can now insert MATLAB expressions or
commands into regular expressions or replacement strings. The dynamic
part of the expression is then evaluated at runtime.

• Generating literals in expressions — Use the new regexptranslate function
when you want any of the MATLAB regular expression functions to interpret
a string containing metacharacters or wildcard characters literally.

• New parsing modes — Four matching modes (case-sensitive, single line,
multiline, and freespacing) extend the parsing capabilities of the MATLAB
regular expression functions.

• Warnings display — Use the new 'warnings' option with the regular
expression functions to enable the display of warnings that are otherwise
hidden.

Compatibility Considerations
Calling regexp or regexpi with the 'tokenExtents' and 'once' options
specified now returns a double array instead of a cell array. You may need to
change your code to accommodate the new return type.

Setting Environment Variables
Use the new setenv function to set the value of an environment variable
belonging to the underlying operating system.

issorted Support for Cell Arrays
You can now use the issorted function on a cell array of strings.

XLS Functions Support More Formats
xlsread now supports Excel files having formats other than XLS (e.g., HTML)
as long as the COM server is available. Also, xlsfinfo now returns this file
format information.
33

Programming, MATLAB Version 7.2 (R2006a)

34
Archiving Functions Accept Files on Path and ~/
Files specified as arguments to gzip, gunzip, tar, and zip can now be specified
as partial pathnames. On UNIX machines, directories can start with ~/ or
~username/, which expands to the current user’s home directory or the
specified user’s home directory, respectively. The wildcard character * can be
used when specifying files or directories, except when relying on the MATLAB
path to resolve a filename or partial pathname.

sendmail No Longer Requires ASCII Messages
E-mail messages that you send using sendmail are no longer restricted to
ASCII character encoding schemes.

MATLAB Warns on Invalid Input to str2func
Due to a bug introduced in MATLAB R14, the str2func function failed to issue
a warning or error when called with an invalid function name or a function
name that includes a path specification. In the R2006a release, str2func now
generates a warning under these conditions. In a future version of MATLAB,
str2func will generate an error under these conditions.

Compatibility Considerations
Any existing code that calls str2func with an invalid function name or a
function name that includes the path will now generate a warning message
from MATLAB. In a future version, this will cause an error. You should note
any such warnings when using R2006a, and fix the input strings to str2func
so that they specify a valid function name.

I/O Functions Can Specify and Use Character
Encoding Schemes
The fopen function has a new optional argument, a string that specifies a name
or alias for the character encoding scheme associated with the file. If this
argument is omitted or is the empty string (''), the MATLAB default encoding
scheme is used. Given a file identifier as the only argument, fopen now returns
an additional output value, a string that identifies the character encoding
scheme associated with the file.

Low-level file I/O functions that read data from files, including fread, fscanf,
fgetl, and fgets, read characters using the encoding scheme associated with

MATLAB Release Notes
the file during the call to fopen. Low-level file I/O functions that write data,
including fwrite and fprintf, write characters using the encoding scheme
associated with the file during the call to fopen.

Support for character encoding schemes has these limitations:

• Surrogate pairs are not supported. Each surrogate pair is read as a
replacement character, the equivalent of char(26).

• Stateful character encoding schemes are not supported.

• Byte order marks are not interpreted in any special way. Your code must
skip them if necessary.

• Scanning of numbers, using fscanf, is supported only for character encoding
schemes that are supersets of ASCII. (Most popular character encoding
schemes, with the exception of UTF-16, are such supersets.)

Compatibility Considerations
In V7.1 (R14SP3), low-level file I/O functions that read and write data treated
characters as unsigned bytes. Programs may have used native2unicode to
convert input from such functions as fread to the MATLAB internal
representation of characters using a particular character encoding scheme.
Programs may have used unicode2native to convert output to such functions
as fwrite from the MATLAB internal representation of characters using a
particular character encoding scheme.

For example, on a Japanese Windows platform, where the default character
encoding scheme is Shift-JIS, a program may have used native2unicode and
unicode2native to read and write Japanese text in this way:

fid = fopen(file);
data = fread(fid, '*char')';
fclose(fid);
dataU = native2unicode(data);
% operate on data
outData = unicode2native(dataU);
fid = fopen(file, 'w');
fwrite(fid, outData, 'char');
fclose(fid);

Such a program would produce incorrect results in V7.2 (R2006a). The calls to
native2unicode and unicode2native are no longer necessary, because the
35

Programming, MATLAB Version 7.2 (R2006a)

36
fread and fwrite functions now convert characters using a specified (or
default) character encoding scheme. In V7.2 (R2006a), the example code can be
simplified to produce correct results:

fid = fopen(file);
dataU = fread(fid, '*char')';
fclose(fid);
% operate on data
fid = fopen(file, 'w');
fwrite(fid, dataU, 'char');
fclose(fid);

Character Encoding Conversion For Native-Encoded
Files
Reading from a native-encoded file with fread, fgets, fgetl, or fscanf in
previous versions of MATLAB required that you convert any character
encodings in the file by explicitly calling the native2unicode function.
Likewise, writing to a native-encoded file using fwrite required converting the
encoding with unicode2native.

In this release of MATLAB, you can now read and write native-encoded files
directly without having to call native2unicode when reading, or
unicode2native when writing. In most cases, the character encoding
conversion to and from Unicode is done for you automatically.

This applies to reading from a native-encoded file using any of the following:

• fread with precision set to '*char' or 'char=>char'

• fgets or fgetl

• fscanf with the format specifier set to either '%s' or '%c'

or writing to a native-encoded file using

• fwrite with precision set to 'char' or 'char*1'

Compatibility Considerations
If you have existing programs that perform the character encoding conversion
with explicit calls to native2unicode and unicode2native, in most cases you
can continue to use this same code without having to remove these calls from

MATLAB Release Notes
the code. MATLAB produces the same results whether or not you perform the
explicit conversion.

However, if you use fwrite with precision set to either 'char' or 'char*1'
and explicitly convert character encoding using unicode2native, then the
above paragraph does not hold true. In these cases, you need to modify the
program code that performs the fwrite, removing any associated calls to the
unicode2native function.

Example Using fread
If you used either of the following commands prior to release R2006a,

 indata = native2unicode(fread(fid, '*char'));
 indata = native2unicode(fread(fid, 'char=>char'));

You can, but do not need to, replace this code with

indata = fread(fid, '*char');
indata = fread(fid, 'char=>char');

Example Using fgets, fgetl, or fscanf
If you used any of the following commands prior to release R2006a,

indata = native2unicode(fgets(fid));
indata = native2unicode(fgetl(fid));
indata = native2unicode(fscanf(fid, '%s'));
indata = native2unicode(fscanf(fid, '%c'));

You can, but do not need to, replace this code with

indata = fgets(fid);
indata = fgetl(fid);
indata = fscanf(fid, '%s');
indata = fscanf(fid, '%c');
37

Programming, MATLAB Version 7.2 (R2006a)

38
Example Using fwrite
If you used either of the following commands prior to release R2006a,

fwrite(fid, unicode2native(outbuff), 'char');
fwrite(fid, unicode2native(outbuff), 'char*1');

You must replace this code with

fwrite(fid, outbuff, 'char');
fwrite(fid, outbuff, 'char*1');

MATLAB Release Notes
Graphics and 3-D Visualization, MATLAB Version 7.2
(R2006a)

There is one change introduced in this version:

Inspector Has New Look
The Property Inspector (the GUI summoned by the MATLAB inspect
command) has a new look, but no changed functionality. The inspector enables
you to view and change the most commonly used object properties. The figure
below compares the previous version (7.1, left) of the Property Inspector with
the new version (7.2, right):
39

Graphics and 3-D Visualization, MATLAB Version 7.2 (R2006a)

40
Note that in addition to changes in fonts and lines spacing the new inspector
locates pop-up menues at the right margin instead of between the two columns.
Also, some icons have been redesigned.

MATLAB Release Notes
Creating Graphical User Interfaces (GUIs), MATLAB Version
7.2 (R2006a)

New features and changes introduced in this version are:

• Treatment of '&' in Menu Label Is Changed

• Major Documentation Revision

Treatment of '&' in Menu Label Is Changed
The use of '&' (andpersand) in the uimenu 'Label' property string is changed
for cases that use the constructs 'A& B' and 'A&&B'. The changes bring these
constructs in line with the way '&' is used in other 'Label' constructs. See
“Compatibility Considerations” below for specific information.

Compatibility Considerations
Interpretation of 'Label' property strings that use the following constructs is
changed:

• The string 'A& B' now produces the menu label A& B with no underlined
mnemonic. Previously, 'A& B' produced the label A_B, in which the space is
a mnemonic.

• The string 'A&&B' now produces the menu label A & B with no underlined
mnemonic. Previously, 'A&&B' produced the label A&B with no mnemonic.

If you use either construct, 'A& B' or 'A&&B', in your menu labels, verify that
the new resulting label is acceptable or change the 'Label' property to a new
string.
41

Creating Graphical User Interfaces (GUIs), MATLAB Version 7.2 (R2006a)

42
Major Documentation Revision
The MATLAB document Creating Graphical User Interfaces is reorganized
and rewritten. It now consists of three sections:

• Getting Started – Leads you through the steps needed to create a simple
GUI, both programmatically and using GUIDE.

• Creating GUIs with GUIDE – Contains the information, previously included
in Creating Graphical User Interfaces, that you need to create a GUI using
GUIDE. This section is organized in workflow order with many small
examples of the various steps. A final chapter provides advanced examples.

• Creating GUIs Programmatically – For now, this section contains a
summary of the available functions and complete code examples for three
GUIs.

One GUI uses a variety of user interface controls to enable a user to calculate
the mass of an object after specifying the object’s density and volume.

Two other GUIs work together as an icon editor. One GUI, a color palette, is
embedded in the other GUI, an icon editor. The color palette passes data to
the icon editor whenever the GUI user selects a new color.

Note Following the release of MATLAB version 7.2, Creating Graphical User
Interfaces will be further updated and expanded. The PDF and HTML
versions of this document will be updated on The MathWorks Web site some
time after the release. Check the top page of the HTML document and the title
page of the PDF to determine if they have been updated.

MATLAB Release Notes
External Interfaces/API, MATLAB Version 7.2 (R2006a)
New features and changes introduced in this version are:

• MEX-Files Built with gcc on Linux Must Be Rebuilt

• MEX-Files in MATLAB for Windows x64

• New Microsoft and Intel Compilers Supported

• MWPOINTER Macro for Platform-Independent Fortran Code

• Compaq Visual Fortran Engine and MAT Options File Renamed

• Options Files Removed for Unsupported Compilers

• Obsolete Functions No Longer Documented

• Support for Licensed ActiveX Controls

• Support for VT_Date Type

• Dynamic Linking of External Libraries

MEX-Files Built with gcc on Linux Must Be Rebuilt
In MATLAB V7.2 (R2006a) on Linux and Linux x86-64 platforms, MEX-files
built with gcc must be recompiled and relinked using gcc version 3.4 or later.
Rebuilding is required because MATLAB V7.2 (R2006a) on Linux and Linux
x86-64 platforms is built with gcc version 3.4.

Compatibility Considerations
Changes in gcc version 3.4 have caused incompatibilities between MATLAB
V7.2 (R2006a) and MEX-files built with gcc versions earlier than 3.4.

On Linux and Linux x86-64 platforms, MEX-files built with gcc versions
earlier than 3.4 cannot be used in MATLAB V7.2 (R2006a).

On Linux and Linux x86-64 platforms, MEX-files built with gcc version 3.4 or
later cannot be used in versions of MATLAB earlier than V7.2 (R2006a).

MEX-Files in MATLAB for Windows x64
With the introduction of MATLAB for Windows x64, you can now build 64-bit
MEX-files. These MEX-files have the extension .mexw64. The mexext command
returns mexw64 in MATLAB for Windows x64.
43

External Interfaces/API, MATLAB Version 7.2 (R2006a)

44
Compatibility Considerations
MEX-files built using MATLAB for Windows (32-bit), which have.mexw32
extensions by default, cannot be used in MATLAB for Windows x64.

By default, when MATLAB for Windows x64 is installed, the mex.pl and
mex.bat scripts build MEX-files for a Windows x64 platform (with .mexw64
extensions).

New Microsoft and Intel Compilers Supported
MATLAB V7.2 (R2006a) supports new compilers for building MEX-files on
Windows and Windows x64 platforms:

• Microsoft Visual C++ 2005, also informally called Visual C++ 8.0, part of
Visual Studio 2005

• Intel Visual Fortran 9.0

Environment Variables Needed for Intel Visual Fortran
When you build a MEX-file or an Engine or MAT application using Intel Visual
Fortran 9.0, MATLAB requires an environment variable to be defined,
depending on whether you are building in MATLAB for Windows (32-bit) or
MATLAB for Windows x64:

• MATLAB for Windows (32-bit): The environment variable VS71COMNTOOLS
must be defined. The value of this environment variable is the path to the
Common7\Tools directory of the Visual Studio .NET 2002 or 2003 installation
directory. (Intel Visual Fortran requires Visual Studio .NET 2002 or 2003 on
32-bit Windows platforms.) This environment variable is commonly defined
by the Visual Studio .NET 2003 installation program.

• MATLAB for Windows x64: The environment variable MSSdk must be
defined. The value of this environment variable is the path to the installation
directory for Microsoft Platform SDK for Windows Server 2003. (Intel Visual
Fortran requires Microsoft Platform SDK for Windows Server 2003 on
Windows x64 platforms.) This environment variable is not commonly defined
by the Microsoft Platform SDK installation program.

MATLAB Release Notes
MWPOINTER Macro for Platform-Independent
Fortran Code
MATLAB provides a preprocessor macro, MWPOINTER, that declares the
appropriate Fortran type representing a pointer to an mxArray or to other data
that is not of a native Fortran type, such as memory allocated by mxMalloc. On
32-bit platforms, the Fortran type that represents a pointer is INTEGER*4; on
64-bit platforms, it is INTEGER*8. The Fortran preprocessor translates
MWPOINTER to the Fortran declaration that is appropriate for the platform on
which you compile your file.

Compaq Visual Fortran Engine and MAT Options File
Renamed
MATLAB V7.1 (R14SP3) included a Windows Engine and MAT options file
named df66engmatopts.bat. This file contained options for Compaq Visual
Fortran version 6.6 for use in building Fortran engine or MAT stand-alone
programs. The file name df66engmatopts.bat originated with an earlier
version of the Fortran compiler, named Digital Fortran.

In V7.2 (R2006a), this file has been renamed cvf66engmatopts.bat to match
the Compaq Visual Fortran product name.

Compatibility Considerations
You may need to change any scripts that depend on the earlier name for the
options file.

Options Files Removed for Unsupported Compilers
MATLAB V7.1 (R14SP3) included MEX, Engine, and MAT options files for a
number of Windows C and Fortran compilers that were untested. These
45

External Interfaces/API, MATLAB Version 7.2 (R2006a)

46
options files are not included in V7.2 (R2006a). The unsupported compilers,
and the supported compilers that replace them, are:

Compatibility Considerations
If you were using an untested compiler with a previous version of MATLAB,
replace it with a supported compiler. You may need to recompile your
MEX-files or applications.

Obsolete Functions No Longer Documented
In V7.1 (R14SP3), many MAT-file access, MX array manipulation, MEX-files,
and MATLAB engine functions were declared obsolete in the External
Interfaces Reference documentation. These functions are no longer
documented in V7.2 (R2006a).

This section lists the obsolete functions removed from the documentation,
along with replacement functions, if any.

Unsupported Compiler Supported Replacement

Borland 5.0, 5.2, 5.3, 5.4 Borland 5.5, Borland 5.5 Free,
Borland 5.6

Digital Visual Fortran 5.0, 6.0 Compaq Visual Fortran 6.1,
Compaq Visual Fortran 6.6, Intel
Visual Fortran 9.0

Microsoft Visual C++ 5.0, Visual
C++ .NET 2002 (7.0)

Microsoft Visual C++ 6.0, Visual
C++ .NET 2003 (7.1), Visual C++
2005 (8.0)

Watcom 10.6, 11 Open Watcom 1.3

MATLAB Release Notes
Obsolete Functions: MAT-File Access (C)

Obsolete Function Replacement

matDeleteArray (C) matDeleteVariable (C)

matDeleteMatrix (C) matDeleteVariable (C)

matGetArray (C) matGetVariable (C)

matGetArrayHeader (C) matGetVariableInfo (C)

matGetFull (C) matGetVariable (C) followed by
mxGetM (C), mxGetN (C), mxGetPr
(C), mxGetPi (C)

matGetMatrix (C) matGetVariable (C)

matGetNextArray (C) matGetNextVariable (C)

matGetNextArrayHeader (C) matGetNextVariableInfo (C)

matGetNextMatrix (C) matGetNextVariable (C)

matGetString (C) matGetVariable (C) followed by
mxGetString (C)

matPutArray (C) matPutVariable (C)

matPutArrayAsGlobal (C) matPutVariableAsGlobal (C)

matPutFull (C) mxCreateDoubleMatrix (C)
followed by mxSetPr (C), mxSetPi
(C), matPutVariable (C)

matPutMatrix (C) matPutVariable (C)

matPutString (C) mxCreateString (C) followed by
matPutVariable (C)
47

External Interfaces/API, MATLAB Version 7.2 (R2006a)

48
Obsolete Functions: MX Array Manipulation (C)

Obsolete Function Replacement

mxClearLogical (C) None

mxCreateFull (C) mxCreateDoubleMatrix(C)

mxCreateScalarDouble (C) mxCreateDoubleScalar(C)

mxFreeMatrix (C) mxDestroyArray(C)

mxGetName (C) matGetVariable (C),
mexGetVariable (C), or
engGetVariable (C)

mxIsFull (C) mxIsSparse(C)

mxIsString (C) mxIsChar(C)

mxSetLogical (C) None

mxSetName (C) matPutVariable (C),
mexPutVariable (C), or
engPutVariable (C)

MATLAB Release Notes
Obsolete Functions: MEX-Files (C)

Obsolete Function Replacement

mexAddFlops (C) None

mexGetArray (C) mexGetVariable (C)

mexGetArrayPtr (C) mexGetVariablePtr (C)

mexGetEps (C) mxGetEps (C)

mexGetFull (C) mexGetVariable (C) followed by
mxGetM (C), mxGetN (C), mxGetPr
(C), mxGetPi (C)

mexGetGlobal (C) mexGetVariablePtr (C)

mexGetInf (C) mxGetInf (C)

mexGetMatrix (C) mexGetVariable (C)

mexGetMatrixPtr (C) mexGetVariablePtr (C)

mexGetNaN (C) mxGetNaN (C)

mexIsFinite (C) mxIsFinite (C)

mexIsInf (C) mxIsInf (C)

mexIsNaN (C) mxIsNaN (C)

mexPutArray (C) mexPutVariable (C)

mexPutFull (C) mxCreateDoubleMatrix (C)
followed by mxSetPr (C), mxSetPi
(C), mexPutVariable (C)

mexPutMatrix (C) mexPutVariable (C)
49

External Interfaces/API, MATLAB Version 7.2 (R2006a)

50
Obsolete Functions: MATLAB Engine (C)

Obsolete Function Replacement

engGetArray (C) engGetVariable (C)

engGetFull (C) engGetVariable (C) followed by
mxGetM (C), mxGetN (C), mxGetPr
(C), mxGetPi (C)

engGetMatrix (C) engGetVariable (C)

engPutArray (C) engPutVariable (C)

engPutFull (C) mxCreateDoubleMatrix (C)
followed by mxSetPr (C), mxSetPi
(C), engPutVariable (C)

engPutMatrix (C) engPutVariable (C)

engSetEvalCallback (C) None

engSetEvalTimeout (C) None

engWinInit (C) None

MATLAB Release Notes
Obsolete Functions: MAT-File Access (Fortran)

Obsolete Function Replacement

matDeleteArray (Fortran) matDeleteVariable (Fortran)

matDeleteMatrix (Fortran) matDeleteVariable (Fortran)

matGetArray (Fortran) matGetVariable (Fortran)

matGetArrayHeader (Fortran) matGetVariableInfo (Fortran)

matGetFull (Fortran) matGetVariable (Fortran)
followed by mxGetM (Fortran),
mxGetN (Fortran), mxGetPr
(Fortran), mxGetPi (Fortran)

matGetMatrix (Fortran) matGetVariable (Fortran)

matGetNextArray (Fortran) matGetNextVariable (Fortran)

matGetNextArrayHeader
(Fortran)

matGetNextVariableInfo
(Fortran)

matGetNextMatrix (Fortran) matGetNextVariable (Fortran)

matGetString (Fortran) matGetVariable (Fortran)
followed by mxGetString
(Fortran)

matPutArray (Fortran) matPutVariable (Fortran)

matPutArrayAsGlobal (Fortran) matPutVariableAsGlobal
(Fortran)

matPutFull (Fortran) mxCreateDoubleMatrix (Fortran)
followed by mxSetPr (Fortran),
mxSetPi (Fortran),
matPutVariable (Fortran)
51

External Interfaces/API, MATLAB Version 7.2 (R2006a)

52
Obsolete Functions: MX Array Manipulation (Fortran)

matPutMatrix (Fortran) matPutVariable (Fortran)

matPutString (Fortran) mxCreateString (Fortran)
followed by matPutVariable
(Fortran)

Obsolete Function Replacement

mxClearLogical (Fortran) None

mxCreateFull (Fortran) mxCreateDoubleMatrix(Fortran)

mxCreateScalarDouble (Fortran) mxCreateDoubleScalar(Fortran)

mxFreeMatrix (Fortran) mxDestroyArray(Fortran)

mxGetName (Fortran) matGetVariable (Fortran),
mexGetVariable (Fortran), or
engGetVariable (Fortran)

mxIsFull (Fortran) mxIsSparse(Fortran)

mxIsString (Fortran) mxIsChar(Fortran)

mxSetLogical (Fortran) None

mxSetName (Fortran) matPutVariable (Fortran),
mexPutVariable (Fortran), or
engPutVariable (Fortran)

Obsolete Function Replacement

MATLAB Release Notes
Obsolete Functions: MEX-Files (Fortran)

Obsolete Function Replacement

mexGetArray (Fortran) mexGetVariable (Fortran)

mexGetArrayPtr (Fortran) mexGetVariablePtr (Fortran)

mexGetEps (Fortran) mxGetEps (Fortran)

mexGetFull (Fortran) mexGetVariable (Fortran)
followed by mxGetM (Fortran),
mxGetN (Fortran), mxGetPr
(Fortran), mxGetPi (Fortran)

mexGetGlobal (Fortran) mexGetVariablePtr (Fortran)

mexGetInf (Fortran) mxGetInf (Fortran)

mexGetMatrix (Fortran) mexGetVariable (Fortran)

mexGetMatrixPtr (Fortran) mexGetVariablePtr (Fortran)

mexGetNaN (Fortran) mxGetNaN (Fortran)

mexIsFinite (Fortran) mxIsFinite (Fortran)

mexIsInf (Fortran) mxIsInf (Fortran)

mexIsNaN (Fortran) mxIsNaN (Fortran)

mexPutArray (Fortran) mexPutVariable (Fortran)

mexPutFull (Fortran) mxCreateDoubleMatrix (Fortran)
followed by mxSetPr (Fortran),
mxSetPi (Fortran),
mexPutVariable (Fortran)

mexPutMatrix (Fortran) mexPutVariable (Fortran)
53

External Interfaces/API, MATLAB Version 7.2 (R2006a)

54
Obsolete Functions: MATLAB Engine (Fortran)

Compatibility Considerations
Most of the functions listed as obsolete in this section are unsupported in V6.5
(R13) and later versions. Some obsolete functions are unsupported in earlier
versions.

If this section lists a replacement for an obsolete function, change any code that
refers to the obsolete function to use the replacement instead.

If you must use an obsolete function in a MEX-file or application, use the -V5
option to mex when you build the file.

Support for Licensed ActiveX Controls
MATLAB supports the use of ActiveX controls that require licensing at both
design time and runtime.

See the actxcontrol function for information on how to specify a design-time
license key.

Obsolete Function Replacement

engGetArray (Fortran) engGetVariable (Fortran)

engGetFull (Fortran) engGetVariable (Fortran)
followed by mxGetM (Fortran),
mxGetN (Fortran), mxGetPr
(Fortran), mxGetPi (Fortran)

engGetMatrix (Fortran) engGetVariable (Fortran)

engPutArray (Fortran) engPutVariable (Fortran)

engPutFull (Fortran) mxCreateDoubleMatrix (Fortran)
followed by mxSetPr (Fortran),
mxSetPi (Fortran),
engPutVariable (Fortran)

engPutMatrix (Fortran) engPutVariable (Fortran)

MATLAB Release Notes
See Deploying ActiveX Controls Requiring Runtime Licenses for information
on how to use ActiveX Controls that require runtime licenses in your MATLAB
application.

Support for VT_Date Type
MATLAB defines a data type to be used with controls requiring input defined
as type VT_DATE. See Date Data Type for more information.

Dynamic Linking of External Libraries
MATLAB supports dynamic linking of external libraries only on 32-bit
MS-Windows systems and 32-bit Linux systems. See MATLAB Interface to
Generic DLLs for more information.
55

External Interfaces/API, MATLAB Version 7.2 (R2006a)

56

MATLAB Release Notes

57

Version 7.1 (R14SP3) MATLAB

This table summarizes what’s new in Version 7.1 (R14SP3):

New features and changes introduced in this version are organized by these
areas:

• Desktop Tools and Development Environment, MATLAB Version 7.1
(R14SP3)

• Mathematics, MATLAB Version 7.1 (R14SP3)

• Data Analysis, MATLAB Version 7.1 (R14SP3)

• Programming, MATLAB Version 7.1 (R14SP3)

• Graphics and 3-D Visualization, MATLAB Version 7.1 (R14SP3)

• Creating Graphical User Interfaces (GUIs), MATLAB Version 7.1 (R14SP3)

• External Interfaces/API, MATLAB Version 7.1 (R14SP3)

New Features
and Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related Documentation
at Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations in
descriptions of new
features and
changes. See also
Summary.

Bug Reports
at Web site

No

Desktop Tools and Development Environment, MATLAB Version 7.1 (R14SP3)

58
Desktop Tools and Development Environment, MATLAB
Version 7.1 (R14SP3)

New features and changes introduced in this version are organized by these
topics:

• Startup and Shutdown

• Desktop

• Running Functions—Command Window and Command History

• Help

• Workspace, Search Path, and File Operations

• Editing and Debugging M-Files

• Tuning and Managing M-Files

• Publishing Results

Startup and Shutdown
New features and changes introduced in this version are described here.

Windows -nodesktop No Longer has Menu Bar and Toolbar; Use Function
Equivalents Instead
The behavior of MATLAB when started on a Windows platform with the
-nodesktop option has changed. The MATLAB Command Window no longer
displays a menu bar or toolbar. This change resolves a number of problems that
occurred in previous versions when running MATLAB in -nodesktop mode on
Windows.

Compatibility Considerations. Use equivalent functions instead of the menu and
toolbar.

Instead of using the File > Preferences menu to modify the font or colors used
in the Command Window, run preferences -nodesktop. For more
information, see preferences Function Now Supports -nodesktop Option.

MATLAB Release Notes
Desktop
New features and changes introduced in this version are organized by these
topics:

• Arranging Windows and Documents

• Preferences Directory Added for R14SP3; Supplements R14 Directory

• Preferences Changes for Fonts, Hyperlinks, and -nodesktop

• info.xml File Automatic Validation; Shows Warnings for Invalid Constructs

• Other Desktop Changes

Arranging Windows and Documents

Figure Windows Now Dockable on Macintosh. On Macintosh platforms, figure
windows are now dockable.

Resize Multiple Tools at Once. You can now position the pointer at the intersection
of three or four tools or documents to resize all of them at once.

Resize and Move Desktop Tools Using the Keyboard. There are now menu items you
can select to move and resize the active tool in the desktop. Use the menu item
mnemonics to perform those action with the keyboard. For example, if the
Command Window is in the desktop along with other tools, press Ctrl+0 (or
click in it) to make the Command Window the active tool. Then press Alt+D, V,
which is the mnemonic equivalent for selecting Desktop -> Move Command
Window. The pointer becomes an arrow. Use the arrow keys to move an outline
of the Command Window to a new dockable location. Press Enter to dock it
there, or press Escape to return the Command Window to its original position.

Resize Names in the Document Bar. You can now adjust the width of a name in the
document bar when the bar is at the top or bottom of the window.

Positioning Document Bar Menu Item Name Changed. In previous versions, selecting
Desktop -> Document Bar displayed only menu items for positioning the
document bar. Now, there are additional menu items. The same change was
made to the context menu for the document bar. To access the menu items for
positioning the document bar, select Desktop -> Document Bar -> Bar
Position.
59

Desktop Tools and Development Environment, MATLAB Version 7.1 (R14SP3)

60
Keyboard Access Added for Document Bar Options. The Desktop -> Document Bar
now includes these items: Alphabetize, Width, and Move documentname On
Bar. With their inclusion in the menu, you can use the keyboard to access these
features via mnemonics. For example, on Windows, press Alt+D, M, A as a
shortcut to for Desktop -> Document Bar -> Alphabetize.

Left/Right and Top/Bottom Split for Document Arrangements Name Changed. When
arranging documents in desktop tools, you could choose Window -> Left/Right
Split or Window -> Top/Bottom Split to show two documents at once in the
tool. Those menu items are now called Left/Right Tile and Top/Bottom Tile.
This change was made to avoid any confusion with the Editor/Debugger’s new
split screen feature.

Preferences Directory Added for R14SP3; Supplements R14 Directory
There is a new preferences directory, R14SP3. This is the directory name
returned when you run the prefdir function. When you install R14SP3,
MATLAB migrates files from your existing preference directory, R14, to the
new directory, R14SP3. Changes made to files in the directory when you run
R14SP3 are not used when you run previous R14 releases.

This represents a change in the preference directory MATLAB uses for a minor
release, and was done to prevent serious backwards compatibility problems. It
is primarily relevant if you use R14SP3 and previous R14 releases. If you only
run R14SP3, or run R14SP3 with R13 or R12 releases, you will not be affected
by this change.

In the past, minor releases and the associated major release used the same
preferences directory. For example, R13 and R13SP1 shared the R13
preferences directory. That continues to be true for all previous releases, but is
not true for R14SP3 and beyond. The R14 preferences directory will be shared
by the R14 through R14SP2 releases, but the new R14SP3 preferences directory
will only be used by R14SP3. This means that changes made to files in the
directory while running R14SP3 will not be used when you run a previous R14
releases, and the reverse is true. For example, statements added to the
Command History when you run R14SP3 will not be seen in the Command
History when you run R14SP2.

For more information, see the reference page for prefdir.

Compatibility Considerations. This change was made to prevent major backwards
compatibility problems. Use the R14SP3 preferences directory instead of the

MATLAB Release Notes
R14 directory. If you use the prefdir function and have code that relies on the
result being R14, you will need to modify that code.

Preferences Changes for Fonts, Hyperlinks, and -nodesktop

Font Antialiasing Preference Added. In Preferences -> Fonts, select the new
antialiasing preference to provide a smoother appearance to desktop fonts.

Hyperlink Color Preference Changed. There is a new Colors preference for
specifying the color of hyperlinks in the Command Window and the Help
browser Index pane. In previous releases, this preference only applied to the
Command Window hyperlinks and was accessed via Command Window
preferences.

preferences Function Now Supports -nodesktop Option. Run preferences
-nodesktop after starting MATLAB on Windows with the -nodesktop option
to change Command Window font and colors via a special Preferences dialog
box.

To set other available preferences for the Command Window after starting
MATLAB with the -nodesktop option, run preferences and use the resulting
Preferences dialog box for all tools and products. Note that changes you make
to font and color preferences in this dialog box do not apply to the Command
Window.

info.xml File Automatic Validation; Shows Warnings for Invalid Constructs
If you add your own toolbox to the Start button, you can use the schema file for
its info.xml file, matlabroot/sys/namespace/info/v1/info.xsd. MATLAB
now automatically validates your info.xml file against this schema when you
click the Start button after updating and refreshing your info.xml file.

Compatibility Considerations. If your info.xml contains invalid constructs, you
will see warnings in the Command Window until you correct the problems.
61

Desktop Tools and Development Environment, MATLAB Version 7.1 (R14SP3)

62
Other Desktop Changes

Paste Special Menu Item Renamed. In the Edit menu, the name of the Paste
Special item has been replaced by Paste to Workspace, but the functionality
remains the same. It opens the Import Wizard so you can paste the clipboard
contents to the MATLAB workspace.

Rename Shortcut Categories. You can now rename shortcut categories.

Running Functions—Command Window and
Command History
New features and changes introduced in this version are

• Tab Completion Preference Added

• Tab Completion No Longer Shows Entries Twice

• Incremental Search Now Supports Removing Characters

• Hyperlink Color Preference Moved

Tab Completion Preference Added
There is a new Command Window preference, Tab key narrows completion.
When selected, with a list of possible completions in view, type another
character and press Tab to further narrow the list shown. Repeat to continue
narrowing the list. This behavior is similar to tab completion behavior in
releases prior to R14.

Tab Completion No Longer Shows Entries Twice
In previous versions, when completing filenames or function names, a name
sometimes appeared twice in the completion list, once with the a file extension
and once without. Now the entry appears only once.

Incremental Search Now Supports Removing Characters
In incremental search, use Ctrl+G to remove characters back to the previous
successful string of characters found. For example, when searching for the
term plode, the text is not found and Failing appears in the incremental
search field. Ctrl+G automatically removes the de from the search term
because plo does exist in the file.

MATLAB Release Notes
Hyperlink Color Preference Moved
The preference for specifying the hyperlink color has moved from the
Command Windows preference pane to the Colors preference pane. The
hyperlink color now also applies to links in the Help browser Index pane.

Compatibility Considerations. Use the Colors preference pane to specify the
hyperlink color, and be aware that it also impacts the Help browser Index pane
color.

Help
New features and changes introduced in this version are

• Hyperlink Color Preference Moved

• New Look for Demos, Including Thumbnails and Categories

• Demos Run in Command Window as Scripts and Their Variables Now
Created in Base Workspace

• echodemo Function Added to Replace playshow function

• Add Demos to Favorites

• Adding Your Own Demos Type Tag Now Supported

• Bug Reporting System Introduced

Hyperlink Color in the Index Pane Preference Added
You can now specify the color for links in the Help browser Index pane using
the Colors preference pane. The hyperlink color also applies to links in the
Command Window, so changes you make to the preference apply to both tools.

New Look for Demos, Including Thumbnails and Categories
Stylistic changes were made to the Demos interface in the Help browser. On
the summary page for a product, each demo appears with a thumbnail image
that provides an indication of the type of output it creates, as well as an icon
representing the type of demo (M-file, M-GUI, model, or video).

Demos Run in Command Window as Scripts and Their Variables Now
Created in Base Workspace
In this release, all M-file demos include the Run in the Command Window
link, which executes the demo via echodemo.
63

Desktop Tools and Development Environment, MATLAB Version 7.1 (R14SP3)

64
In previous releases, some M-file demos provided a Run hyperlink in the
display pane. When you clicked Run, the M-file demo executed in a GUI via the
playshow function. An example of this type of demo is the MATLAB
Mathematics Basic Matrix Operations demo, intro.m. In this release, the Run
hyperlink for these M-file demos has been replaced by Run in the Command
Window. It executes the demo step-by-step in the Command Window via the
echodemo function. Double-clicking this type of M-file demo in the Navigator
pane no longer runs the M-file demo, but opens the M-file in the
Editor/Debugger where you can run it step-by-step using Cell -> Evaluate
Current Cell and Advance.

Compatibility Considerations. The new Run in Command Window hyperlink
represent a change in the way demos run.

The echodemo function MATLAB uses to run M-file demos in the Command
Window runs the demos as scripts. The playshow function MATLAB used to
run M-file demos in previous releases ran the demos as a function. This means
that now the demo’s variables are created in the base workspace. If you have
variables in the base workspace when you run an M-file demo, and the demo
uses an identical variable name, there could problems with variable name
conflicts. For example, your variable could be overwritten. The demo’s
variables remain in the base workspace after the demo finishes running until
you clear them or quit MATLAB. Another change is that figures are not
automatically closed when you end the demo.

echodemo Function Added to Replace playshow function
There is a new echodemo function that replaces playshow. The Demos browser
uses echodemo to execute M-file demos when you click the Run in the
Command Window link.

Compatibility Considerations. The playshow function is deprecated in favor of the
echodemo function. In a future release, the playshow function will be removed.
In practice, both echodemo and playshow are helper functions for running
demos. It is unlikely you would ever call either playshow or echodemo directly,
and especially not in M-files.

Add Demos to Favorites
You now can add published M-file demos to favorites.

MATLAB Release Notes
Adding Your Own Demos Type Tag Now Supported
If you add demos for your own toolbox, you can use the new <type> tag for a
<demoitem> to identify the type of demo in your toolbox’s demos.xml file.

Bug Reporting System Introduced
You now can view bugs fixed with this release, as well as any known bugs using
the Bug Reports database in the Support section of the MathWorks Web site.
The MathWorks continuously updates the database to add any newly found
bugs and compatibility issues, as well as any new workarounds and solutions.
The system includes bugs found and fixed in R14SP2 and later releases.

Workspace, Search Path, and File Operations
New features and changes introduced in this version are described here.

Find Files Offers Additional Filtering
The Find Files tool has been enhanced. It now allows you to search all file types
except those specified. It also lets you ignore files larger than a specified size.
Along with enhancements to the Find Files tool, some minor feature changes
were made, including the removal of the Restore Defaults button.

Visual Directory View to be Removed
In the next release, the Current Directory browser will no longer support the
Visual Directory view (accessed using the toolbar button).

Compatibility Considerations. Some features currently available using the Visual
Directory view will not be available in the next release when the feature is
removed.
65

Desktop Tools and Development Environment, MATLAB Version 7.1 (R14SP3)

66
Editing and Debugging M-Files
New features and changes introduced in this version are

• Split Screen Display Added

• Highlight Current Line Added

• Comment Lines in Java and C/C++ Files Now Supported

• HTML File Indenting Feature Added as the Default

• Incremental Search Now Supports Removing Characters

• Emacs Key Binding for Select All

• Change Case Added to Menu

• Nested Function Name No Longer in Status Bar

Split Screen Display Added
The Editor/Debugger now supports a horizontal or vertical split screen for
displaying two different parts of the same document at once. To split the
screen, select Window -> Split Screen and the splitting action you want, for
example, Top/Bottom. Alternatively, drag the splitter bar that appears above
the vertical scroll bar or to the left of the horizontal scroll bar. To remove the
splitter, drag it to an edge of the window.

MATLAB Release Notes
Highlight Current Line Added
You can set a preference to highlight the current line, that is, the line with the
caret (also called the blinking cursor). This is useful, for example, to help you
see where copied text will be inserted when you paste. To highlight the current
line, select Preferences -> Editor/Debugger -> Display and under General
Display Options, select the check box for Show caret row highlighting. You
can also specify the color used to highlight the line.

Document with top/bottom split.
67

Desktop Tools and Development Environment, MATLAB Version 7.1 (R14SP3)

68
Comment Lines in Java and C/C++ Files Now Supported
You can now use the Text -> Comment feature to comment selected lines in
Java and C/C++ files. This adds the // symbols at the front of the selected lines.
Similarly, Text -> Uncomment removes the // symbols from the front of
selected lines in Java and C/C++ files.

HTML File Indenting Feature Added as the Default
There is a new Editor/Debugger language preference for HTML files to specify
block indenting. By default, the preference is selected so block indenting
applies when typing text in HTML files.

In addition, you now can select Text -> Smart Indent to apply smart indenting
to selected text in HTML files.

Compatibility Considerations. When typing text in HTML files, you will
automatically see block indenting because the preference is selected by default.

Incremental Search Now Supports Removing Characters
In incremental search, use Ctrl+G to remove characters back to the previous
successful string of characters found. For example, when searching for the

Current line (line with the caret/blinking cursor) is highlighted.

MATLAB Release Notes
term plode, the text is not found and Failing appears in the incremental
search field. Ctrl+G automatically removes the de from the search term
because plo does exist in the file

Emacs Key Binding for Select All
With the Emacs key bindings preference selected, use Ctrl+X, H to select all.

Change Case Added to Menu
Use new items in the Text menu to change the case of selected text. You can
also use the keyboard equivalents for changing case that existed in previous
versions—these are shown in the menu next to each item.

Nested Function Name No Longer in Status Bar
The Editor/Debugger no longer displays the current nested function name in
the status bar. Look in the M-file to view the current nested function name.

Tuning and Managing M-Files
New features and changes introduced in this version are described here.

Directory Reports Uses New Run Buttons
With Directory Reports displayed in the Web browser, you can use these two
new buttons:

• Rerun This Report—This updates the currently displayed report after you
have made changes to the report options or to any files in the current
directory.

• Run Report on Current Directory—Use this after changing the current
directory to run the same type of report for the new current directory.

These new buttons replace the Refresh button.

Override %#ok with the New mlint -notok Option
There is a new option for the mlint function, '-notok' you can use to override
any statements that include %#ok (the symbol you add to the end of a line
instructing mlint to ignore the line). That is, mlint will run for all lines in the
file and will not ignore any statements.
69

Desktop Tools and Development Environment, MATLAB Version 7.1 (R14SP3)

70
Hyperlink Now Part of Messages Displayed by mlint
When you run the mlint function, the line number in the messages displayed
is a hyperlink that when clicked, opens the file in the Editor/Debugger scrolled
to that line number.

Profiler Button Added to Toolbar
There is now a button on the MATLAB desktop toolbar to open the Profiler.

Publishing Results
New features and changes introduced in this version are described here.

Notebook Setup Changes; Some Arguments Removed
The notebook function setup behavior and syntax have changed.

When you run notebook('-setup'), MATLAB automatically obtains all the
Word information from the Windows system registry and you are no longer
prompted to supply the information.

In previous versions, when you configured Notebook, you ran

notebook ('-setup')

Notebook then prompted you to specify the version of Microsoft Word you were
using, and if needed, the location of Word and its template directory. You could
supply the information using optional arguments to the notebook function:

notebook('-setup', wordversion, wordlocation, templatelocation)

Now, when you run notebook('-setup'), MATLAB automatically obtains all
the Word information from the Windows system registry.

Compatibility Considerations. If you use notebook with the wordversion,
wordlocation, and templatelocation arguments in any of your files (for
example, startup.m), remove those arguments in your files. If you specify the
optional arguments, the notebook function runs and issues a warning, but
ignores the values. In a future release, MATLAB will issue an error when it
encounters notebook with these arguments.

MATLAB Release Notes
Word Versions Supported by Notebook; Word 97 No Longer Supported
MATLAB Notebook supports Word versions 2000, and supports Word 2002 and
2003, both for XP.

Compatibility Considerations. As of MATLAB 7.1 (R14SP3), Notebook no longer
supports Microsoft Word 97.
71

Desktop Tools and Development Environment, MATLAB Version 7.1 (R14SP3)

72

MATLAB Release Notes
Mathematics, MATLAB Version 7.1 (R14SP3)
New features and changes introduced in this version are organized by these
topics:

• New Functions

• Modified Functions

• Changes to accumarray

• Imposing Nonnegativity Constraints on Computed ODE Solution

• Mersenne Twister Support in rand

• svd Returns Economy Decomposition

• New Location for LAPACK Libraries

• Documentation on Data Analysis

New Functions
The following functions are new in R14SP3:

Compatibility Considerations
A new function name can potentially introduce a backward incompatibility
since it can, under certain circumstances, override a variable with the same
name as the new function. This is especially true for names that are commonly
used as variable names in program code.

An example of such a function name is the mode function, introduced in this
release. If you have M-file programs that use mode as a variable name, it is
possible under certain conditions for MATLAB to interpret these variable
names as function names by mistake. Read the section “Potential Conflict with
Function Names” in the MATLAB Programming documentation to find out
how to avoid having these variables misinterpreted.

Function Description

hypot Square root of sum of squares

mode Finds most frequent values in sample
73

Mathematics, MATLAB Version 7.1 (R14SP3)

74
If your program code uses a user-written function named mode, you may find
that MATLAB calls the new MATLAB mode function instead of your own mode
function. To correct this, modify your MATLAB path by placing the location of
your own mode function closer to the beginning of the path string than the
location of the MATLAB mode.m file. The help for the addpath and rmpath
functions explains how to modify your MATLAB path.

Modified Functions
The following functions have been modified in MATLAB 7.1:

Changes to accumarray
MATLAB Version 7.1 adds the following new features to the accumarray
function:

• The data type for the val input can be any numeric type, or logical, or
character.

• The data type for the subs input can be any numeric type.

• You can use a cell array of separate index vectors for the subs input.

• When you specify a function input argument, the value returned by
accumarray is given the same class as the values returned by that function.

• You can control the sparsity of the value returned by accumarray by
specifying the new input argument issparse.

Function Modified Behavior

accumarray Allows more flexibility for input/output classes and
functions to be called

odeset New NonNegative integration property to impose
nonnegativity constraints on an ODE solution

rand Supports the Mersenne Twister algorithm in generating
random numbers

svd Returns economy decomposition

MATLAB Release Notes
Imposing Nonnegativity Constraints on Computed
ODE Solution
There is a new integration property called NonNegative that you can use when
applying ODE initial value problem solvers. If you need to solve a problem in
which certain components of the solution must be nonnegative, use the
NonNegative property to impose nonnegativity constraints on the computed
solutions.

See “Example: Computing Nonnegative Solutions” under “Differential
Equations” in the MATLAB Mathematics documentation for more information
on this feature.

Mersenne Twister Support in rand
The rand function now supports a method of random number generation called
the Mersenne Twister. The algorithm used by this method, developed by
Nishimura and Matsumoto, generates double precision values in the closed
interval [2^(-53), 1-2^(-53)], with a period of (2^19937-1)/2.

For a full description of the Mersenne twister algorithm, see

 http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

svd Returns Economy Decomposition
The following feature was released in MATLAB 7.0, but was undocumented
until this release.

The command svd(A,'econ') returns economy decomposition on matrices
having few rows and many columns as well as those with many rows and few
columns. svd(A,0) continues to behave as it always has, namely to only return
economy-sized decomposition on matrices having many rows and few columns.

Note that this does not carry over to the qr function as there is no valid way of
cutting out any of the information returned by qr to make an economy-sized
decomposition of matrices having few rows and many columns.
75

Mathematics, MATLAB Version 7.1 (R14SP3)

76
New Location for LAPACK Libraries
The location of the LAPACK libraries has been changed. These libraries are
now located in

extern/lib/win32/microsoft/libdflapack.lib
extern/lib/win32/microsoft/libmwlapack.lib

This change impacts you only if you build MEX-files that call LAPACK and
BLAS functions.

Documentation on Data Analysis
The section of the MATLAB Mathematics documentation on “Data Analysis
and Statistics” has been moved to a new Data Analysis book. This book
documents MATLAB functions and tools that support basic data analysis,
including plotting, descriptive statistics, correlation, interpolation, filtering,
and Fourier analysis. It also documents the new object-oriented command-line
API for analyzing time-series data.

MATLAB Release Notes
Data Analysis, MATLAB Version 7.1 (R14SP3)
New features and changes introduced in this version are descrbied here:

Data Analysis Documentation
The MATLAB 7.1 documentation includes a new Data Analysis book that
describes how to use MATLAB functions and tools for common data-analysis
tasks:

• Plotting

• Filtering

• Interpolation

• Descriptive statistics

• Correlation

• Data fitting using linear regression

• Fourier analysis

• Time-series analysis

Some of the content in Data Analysis is incorporated from the Mathematics
and Graphics books, such as data plotting, descriptive statistics, data fitting,
and Fourier analysis. All information about time-series analysis is new.

Time-Series Analysis
You can analyze time-series data using the new timeseries and tscollection
objects and methods, as well as the Time Series Tools graphical user interface.
This new functionality supports the following:

• Representation for univariate or multivariate time series from MATLAB and
Simulink® logged-signals data

• Built-in management of time units

• Removal or interpolation of missing data

• Resampling of data

• Arithmetic operations for timeseries objects

• Synchronization of time series
77

Data Analysis, MATLAB Version 7.1 (R14SP3)

78
Note Due to reported instabilities on the Linux 64 platform, you must
manually enable the Time Series Tools feature before starting Time Series
Tools.

To manually enable Time Series Tools on the Linux 64 platform, type the
following at the MATLAB prompt:

rehash toolboxcache
feature('TimeSeriesTools',1)

MATLAB Release Notes
Programming, MATLAB Version 7.1 (R14SP3)
New features and changes are organized by these topics:

• New Functions

• Modified Functions

• Evaluation Functions for Arrays, Structures, Cells

• Using who and whos with Nested Functions

• Date and Time Functions Support Milliseconds

• Stack Trace Provided for lasterror

• isfield Function Supports Cell Arrays; Results Might Differ from Previous
Version

• Support for Reading EXIF Data from Image Files

• Performance Improvements to the MATLAB JIT/ Accelerator on Macintosh

• Specifying fread Precision as Number of Bits

• Seconds Field Now Truncated; Results Might Differ

• Built-in Functions No Longer Use .bi; Impacts Output of which Function

• New Warning About Potential Naming Conflict

New Functions
This version introduces the following new functions:

Function Description

arrayfun Applies a given function to each element of an array. This is
especially useful for arrays of structures.

exifread Reads EXIF information from JPEG and TIFF image files

structfun Applies a given function to each field of a structure

swapbytes Swaps byte ordering

typecast Converts data types without changing underlying data
79

Programming, MATLAB Version 7.1 (R14SP3)

80
Compatibility Considerations
A new function name can potentially introduce a backward incompatibility
since it can, under certain circumstances, override a variable with the same
name as the new function. This is especially true for names that are commonly
used as variable names in program code. Read the section “Potential Conflict
with Function Names” in the MATLAB Programming documentation to find
out how to avoid having these variables misinterpreted.

Modified Functions
The following functions were modified in this version:

Compatibility Considerations
The following functions might, under certain circumstances, return a different
value than what was returned in MATLAB 7.0.4 (R14SP2):

• datestr: Output might differ by 1 second from what was returned in a
previous version.

• isfield: Output might differ if you used this feature in a release in which it
was not officially supported.

Function Modified Behavior

cellfun Applies a given function to each cell of a cell array

datestr Seconds field truncates instead of rounding

error Saves stack information that you can retrieve using
lasterror

isfield Supports cell array input

lasterror Returns stack information on last error

rethrow Accepts stack information as input

who, whos Displays information separately for nested functions

MATLAB Release Notes
Evaluation Functions for Arrays, Structures, Cells
MATLAB offers the capability to apply a given function to each element of an
array, each field of a structure, or each cell of a cell array. See the help on
arrayfun, structfun, and cellfun for more information.

Using who and whos with Nested Functions
When you use who or whos inside of a nested function, MATLAB returns or
displays all variables in the workspace of that function, and in the workspaces
of all functions in which that function is nested. This applies whether you
include calls to who or whos in your M-file code or if you call who or whos from
the MATLAB debugger. See the reference page for who for more information.

Date and Time Functions Support Milliseconds
The datestr, datenum, and datevec functions now support time specification
in milliseconds. Use the symbol .FFF to represent milliseconds in any of these
three functions. See the table labeled Free-Form Date Format Specifiers on the
datestr reference page for more information.

Stack Trace Provided for lasterror
The lasterror function now returns an additional field in the structure that it
returns. The new stack field contains information from the stack on the M-file,
function, and line in which the error occurred.

You can use this stack information to track down the source of an error, or as
an input to the rethrow function. When used with rethrow, MATLAB sets the
stack of the rethrown error to the value contained in the stack input.
81

Programming, MATLAB Version 7.1 (R14SP3)

82
isfield Function Supports Cell Arrays; Results Might
Differ from Previous Version
The isfield function now supports cell array input as shown in this example.
Check structure S for any of four possible fieldnames. In this case, only the first
is found, so the first element of the return value is set to true:

S = struct('one', 1, 'two', 2);

fields = isfield(S, {'two', 'pi', 'One', 3.14})
fields =
 1 0 0 0

Compatibility Considerations
There might be backward compatibility issues associated with this change if
you used isfield with cell array input in a previous release. In previous
releases, although isfield might have worked with this type of input in
certain cases, it was not officially a supported feature. If you used this
previously unsupported syntax in previous releases, you may see a change in
the content and/or size of the return values in this release.

For example, create a structure s with three fields a, b, and c created in that
order. In MATLAB 7.0.4, isfield called with a cell array input returns true if
any of the elements of the cell array matches a field name, and if that element
is in the same position in the cell array as the field is in the structure. This is
true for 'c':

isfield(s, {'b'; 'a'; 'c'})
ans =
 1

In MATLAB 7.1, isfield returns true for each element in the cell array that
matches a field name, regardless of where the string is positioned in the cell
array. This is true for 'a', 'b', and 'c':

isfield(s, {'b'; 'a'; 'c'})
ans =
 1
 1
 1

MATLAB Release Notes
Support for Reading EXIF Data from Image Files
You can now read EXIF (Exchangeable Image File Format) data from JPEG
and TIFF graphics files using the new exifread function. EXIF is a standard
used by digital camera manufacturers to store information in the image file,
such as the make and model of a camera, the time the picture was taken and
digitized, the resolution of the image, exposure time, and focal length.

Performance Improvements to the MATLAB JIT/
Accelerator on Macintosh
The JIT/Accelerator for MATLAB, introduced in MATLAB Version 6.5 for
Windows and UNIX, is now also supported on Macintosh systems. The JIT/
Accelerator affects the performance of MATLAB and can give you a substantial
performance increase over earlier MATLAB versions for many MATLAB
applications.

Specifying fread Precision as Number of Bits
The following information on the fread function applies to MATLAB 7.1 and
also to earlier versions.

MATLAB provides the following method of specifying a precision argument
in a call to fread:

input_format=>output_format

For example, to read 50 8-bit unsigned integers from a file and convert them to
characters, you can use

c = fread(fid, 50, 'uint8=>char')'

If the input format and output format are the same, you can abbreviate the
precision specifier by using

*input_format

For example, you can replace

c = fread(fid, 50, 'uint8=>uint8')'

with

c = fread(fid, 50, '*uint8')'
83

Programming, MATLAB Version 7.1 (R14SP3)

84
You can also use this notation with an input stream that is specified as a
number of bits (e.g., bit4 or ubit18). MATLAB translates this into an output
type that is a signed or unsigned integer (depending on the input type), and
which is large enough to hold all of the bits in the source format. For example,
*ubit18 does not translate to ubit18=>ubit18, but instead to ubit18=>uint32.

Seconds Field Now Truncated; Results Might Differ
When handling time data, MATLAB now truncates the seconds field instead
of rounding it. This is consistent with the way that MATLAB handles hours
and minutes.

For example, using MATLAB 7.0.4 (R14SP2), datestr returns

t = datestr('11:30:01.666')
t =
 01-Jan-2005 11:30:02

while MATLAB 7.1 (R14SP3) returns

t = datestr('11:30:01.666')
t =
 01-Jan-2005 11:30:01

Compatibility Considerations
If your M-files relied on the previous behavior, you might get different results.

Built-in Functions No Longer Use .bi; Impacts Output
of which Function
In previous releases, MATLAB function dispatching located built-in functions
by means of special files having a .bi file extension. MATLAB no longer uses
this mechanism to locate built-in functions. All .bi files have been removed in
MATLAB 7.1.

Compatibility Considerations
If you have M-files that relied on built-in files having a .bi extension, your files
need to accomodate this change.

There are changes in how MATLAB displays built-in functions using which:

MATLAB Release Notes
In MATLAB 7.0.4 (R14SP2),

which -all int32
\\matlab\toolbox\symbolic\@sym\int32.m % sym method
\\matlab\toolbox\matlab\datatypes\int32.bi % Shadowed
\\matlab\toolbox\matlab\datatypes\int32.m % Shadowed

In MATLAB 7.1 (R14SP3),

which -all int32
built-in (\\matlab\toolbox\matlab\datatypes\int32)
\\matlab\toolbox\symbolic\@sym\int32.m % sym method

New Warning About Potential Naming Conflict
If you change directories (cd) or add a new directory to your current MATLAB
path, and the new directory contains an M-file having the same name as a
MATLAB built-in function, MATLAB now displays a warning alerting you to
the potential naming conflict. For example,

Warning: Function D:\test\matlab\disp.m has the same name as a
MATLAB builtin. We suggest you rename the function to avoid a
potential name conflict.

In general, any file system event that leads to path refreshing in MATLAB can
trigger this warning if the directory involved in this event has such a user
function under it.

Compatibility Considerations
MATLAB might generate warnings about naming conflicts that did not appear
in previous versions. To avoid this warning, renaming your M-files that have
name conflicts with built-in functions.
85

Programming, MATLAB Version 7.1 (R14SP3)

86

MATLAB Release Notes
Graphics and 3-D Visualization, MATLAB Version 7.1
(R14SP3)

This version introduces the following new features and changes:

Plot Tools Now Available on Mac Platform
As a consequence of enabling Java figures on Macintosh, the Plot Tools user
interface is now available to Mac users, enabling them to interactively add data
to plots, change plot symbology, and otherwise customize their data plots.

Documentation for Data Analysis Reorganized
Documentation explaining techniques for analyzing graphical data has been
shifted from the Graphics book of the MATLAB documentation to a new book
called Data Analysis.
87

Graphics and 3-D Visualization, MATLAB Version 7.1 (R14SP3)

88

MATLAB Release Notes
Creating Graphical User Interfaces (GUIs), MATLAB Version
7.1 (R14SP3)

Plans for Obsolete Functions
The table below indicates functions that were designated as obsolete prior to
R14SP3 and that will be removed in a future version.

Compatibility Considerations
If you use these functions, you should use replacement functions instead.

Obsolete
Function

Removed from
Version

Replacement

clruprop Future version rmappdata

ctlpanel Future version guide

extent Future version get(txtobj,'extent')

figflag Future version findobj to determine if figure exists.

figure(fighandle) to bring figure to
front and give it focus.

getuprop Future version getappdata

hthelp Future version web

layout Future version None provided

matq2ws Future version None provided

matqdlg Future version None provided

matqparse Future version None provided

matqueue Future version None provided

menuedit Future version guide
89

Creating Graphical User Interfaces (GUIs), MATLAB Version 7.1 (R14SP3)

90
menulabel Future version Use '&' to specify mnemonics and
'Accelerator' property to define
accelerator keys.

setuprop Future version setappdata

wizard Future version None provided

ws2matq Future version None provided

Obsolete
Function

Removed from
Version

Replacement

MATLAB Release Notes
External Interfaces/API, MATLAB Version 7.1 (R14SP3)
New features and changes introduced in this version are:

• mex Switches Now Supported on Windows

• New COM Programmatic Identifier

• New File Extension for MEX-Files on Windows

• New Preferences Directory and MEX Options

• Compiler Support

• Import Libraries Moved

• MEX Perl Script Moved

• Linking to System Libraries

• Linking to System Libraries

mex Switches Now Supported on Windows
MATLAB now supports the -l and -L options to the mex command on Windows.
In previous releases of MATLAB, these options were supported only on UNIX.

For the switches you can use with the mex command, see the MEX Script
Switches table in the “Custom Building MEX-Files” section of the “Calling C

Switch Description

-l Specifies additional libraries to link against.

Note On Windows, the -l option can specify libaries of two
forms. For example, specifying -l name matches either
name.lib or libname.lib, whereas on UNIX it matches only
libname.lib.

-L Specifies a path to use when MATLAB searches for library
files specified with the -l option. The -L option must precede
the -l option.
91

External Interfaces/API, MATLAB Version 7.1 (R14SP3)

92
and Fortran Programs from MATLAB” chapter of MATLAB External
Interfaces.

New COM Programmatic Identifier
There is now a ProgID that enables you to use the full desktop version of
MATLAB as an automation server.

Matlab.Desktop.Application starts an automation server using the most
recent version of MATLAB that is installed on your system.

New File Extension for MEX-Files on Windows
MATLAB now uses the extension .mexw32 for MEX-files on 32-bit versions of
Windows. In previous versions, MATLAB used the extension .dll.

The MathWorks recommends that you recompile all MEX-files after installing
MATLAB 7.1. MEX-files compiled in MATLAB 7.0.4 with .dll extensions
should still work in MATLAB 7.1.

There may be two MEX-files with the same name, except that one has a
.mexw32 extension and the other has a .dll extension. When these files are
both on the MATLAB search path:

• If the two files are in the same directory, MATLAB uses the .mexw32 file.

• If the two files are in different directories, MATLAB uses the file in the
directory that is higher on the search path.

If you want one of these two files to take precedence over the other, ensure that
the directory that contains the file you want MATLAB to use is higher on the
search path than the directory that contains the file you do not want MATLAB
to use.

Compatibility Considerations
Previous versions of MATLAB do not recognize MEX-files compiled in
MATLAB 7.1 with .mexw32 extensions. However, you can use the mex -output
option in MATLAB 7.1 to build a MEX-file with a .dll extension that earlier
versions of MATLAB can recognize.

You may need to update any M-files or makefiles that explicitly expect .dll
extensions for compiled MEX-files. You can use the mexext function in
MATLAB to obtain the extension for the platform and version you are working

MATLAB Release Notes
on. A new mexext script obtains the appropriate extension when executed from
outside MATLAB, as in a makefile.

On Windows, MATLAB issues warnings at MEX setup time, compile time, and
run-time to notify you of possible incompatibilities resulting from the change
in MEX-file extension from .dll to .mexw32.

New mex –output Behavior for Compatibility
The -output option to mex specifies the filename of the compiled MEX-file. In
general, mex ignores any filename extension supplied in the -output argument
and uses the extension for the compiled file that is appropriate for the
architecture. However, on Windows, if the -output argument specifies a .dll
extension, the compiled file has this extension instead of .mexw32. Previous
versions of MATLAB can recognize the resulting compiled file.

Conflicting MEX-Files Renamed Automatically
If two files with the same name but with .mexw32 and .dll extensions exist in
the same directory, MATLAB uses the .mexw32 file. To avoid unintended
shadowing, MATLAB automatically renames compiled MEX-files under the
following circumstances:

• When you build a MEX-file with a .mexw32 extension and the directory
contains an existing file with the same name, but with a .dll extension, the
extension of the .dll file is changed to .dll.old.

• When you build a MEX-file with a .dll extension (using the mex -output
option) and the directory contains an existing file with the same name, but
with a .mexw32 extension, the extension of the .mexw32 file is changed to
.mexw32.old.

New Return Value for mexext on Windows
On 32-bit Windows platforms, the mexext function now returns mexw32. In
MATLAB 7.0.4 it returned dll.

New mexext Script to Obtain MEX-File Extension in Makefiles
A new script displays the MEX-file extension in the current version of
MATLAB that corresponds to the platform on which the script is executed. It
is intended to be used outside MATLAB, in makefiles or scripts, to obtain the
appropriate filename extension for compiled MEX-files. Use this script instead
of explicitly specifying the MEX-file extension in a makefile.
93

External Interfaces/API, MATLAB Version 7.1 (R14SP3)

94
The script is named mexext.bat on Windows and mexext.sh on UNIX. It is
located in the directory $matlab/bin, where $matlab represents the string
returned from the matlabroot command.

The script displays the MEX-file extension without a leading period. For
example, on 32-bit Windows platforms, it returns mexw32.

Following is a fragment of a GNU makefile that uses the mexext script to
obtain the MEX-file extension:

ext = $(shell mexext)

yprime.$(ext) : yprime.c
mex yprime.c

New Preferences Directory and MEX Options
The MATLAB preferences directory has changed. In MATLAB 7.1, the
preferences directory is named R14SP3. In previous R14 releases, the
preferences directory was named R14. For more information, see the
documentation for prefdir, which returns the preferences directory.

Compatibility Considerations
When you install MATLAB 7.1, MATLAB migrates some files from any
existing R14 preferences directory to the new R14SP3 directory. However,
MATLAB does not migrate the MEX options file, mexopts.bat. If you want to
preserve any MEX options that you have customized in an earlier R14 release,
you need to migrate your options to the new R14SP3 preferences directory.

You can migrate your MEX options in either of two ways:

• If you have customized only a few options: Invoke mex with the -setup option
to create a new mexopts.bat file in the R14SP3 preferences directory. Edit
the new mexopts.bat file to customize the MEX options there.

• If you have customized many options: Copy your customized mexopts.bat
file from the old R14 preferences directory to the new R14SP3 directory. Edit
at least the settings of the LIBLOC and NAME_OUTPUT linker parameters
in the mexopts.bat file. These lines should look as follows on Windows when
Microsoft is the compiler vendor:

set LIBLOC=%MATLAB%\extern\lib\win32\microsoft
set NAME_OUTPUT=/out:"%OUTDIR%%MEX_NAME%%MEX_EXT%"

MATLAB Release Notes
The LIBLOC parameter has changed because import libraries have moved; see
“Import Libraries Moved” on page 95. The value of this parameter depends on
the platform you are running MATLAB on and the vendor of the compiler you
are using.

The NAME_OUTPUT parameter has changed because the extension for compiled
MEX-Files has changed on Windows; see “New File Extension for MEX-Files
on Windows”.

Compiler Support
The set of compilers that MATLAB supports has changed in MATLAB 7.1. For
a complete, up-to-date list of supported compilers, see the following location on
the Web:

http://www.mathworks.com/support/tech-notes/1600/1601.shtml

Compatibility Considerations
You may need to recompile code compiled with an earlier compiler that is no
longer supported.

Import Libraries Moved
The import libraries (.lib files) for the MATLAB dll files have been moved up
a directory level and are no longer specific to the compiler version. The new
location for these files is

$matlab/extern/lib/$arch/$vendor

where the terms $matlab, $arch, and $vendor respectively represent the string
returned from the matlabroot command, the platform you are running
MATLAB on, and the vendor of the compiler you are using.

Compatibility Considerations
You may need to change any code that depends on the previous library
locations.

MEX Perl Script Moved
The MEX Perl script used in building MEX-files is now located in $matlab/bin,
rather than $matlab/bin/win32. (The term $matlab represents the string
returned by the matlabroot function.) You should not notice any difference,
95

External Interfaces/API, MATLAB Version 7.1 (R14SP3)

96
however, as a batch file located in $matlab/bin/win32 provides backward
compatibility.

Linking to System Libraries
MATLAB now links with the system libraries by default. You no longer need to
specify them explicitly.

COM Automation Server Now Displays Figure
When using MATLAB as an Automation server, executing MATLAB
commands that create figures now displays the figure window.

Previous releases of MATLAB created the figure in the background. To
duplicate the old behavior, create a figure with its Visible property set to off,
then set the property to on when you want the figure to be visible:

h = actxserver('matlab.application');
h.Execute('figure visible off');
h.Execute('plot(1:10)');
h.Execute('set(gcf,''visible'',''on'')');

MATLAB Release Notes
Version 7.0.4 (R14SP2)
MATLAB

This table summarizes what’s new in Version 7.0.4 (R14SP2):

New features and changes introduced in this version are organized by these
areas:

• Desktop Tools and Development Environment, MATLAB Version 7.0.4
(R14SP2)

• Mathematics, MATLAB Version 7.0.4 (R14SP2)

• Programming, MATLAB Version 7.0.4 (R14SP2)

• Graphics and 3-D Visualization, MATLAB Version 7.0.4 (R14SP2)

• Creating Graphical User Interfaces (GUIs), MATLAB Version 7.0.4
(R14SP2)

• External Interfaces/API, MATLAB Version 7.0.4 (R14SP2)

New Features
and Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related Documentation
at Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations in
descriptions of new
features and
changes. See also
Summary.

Bug Reports
at Web site

No
97

98

MATLAB Release Notes
Desktop Tools and Development Environment, MATLAB
Version 7.0.4 (R14SP2)

New features and changes are organized by these topics:

• Installation Folder with Spaces

• Startup and Shutdown

• Desktop

• Running Functions—Command Window and History

• Help

• Workspace, Search Path, and File Operations

• Editing and Debugging M-Files

• Source Control Interface

• Publishing Results

Installation Folder with Spaces
In MATLAB 7.0.4 (R14SP2) the following two changes have been made to the
MathWorks Installer on Windows systems:

• The Installer now allows a folder name with spaces in the installation path.

• The Installer honors the Windows default installation folder, which on most
machines is Program Files.

These changes were made in response to many customer requests and the
desire to conform to a widely established industry practice for the PC platform.

Note MathWorks products are used and integrated into many software
environments. If you use MathWorks products in conjunction with other third
party applications (compilers, other numerical analysis packages, etc.) you
might want to continue installing into a folder that does not have spaces in the
path until you have tested that those applications work with MathWorks
products.
99

Desktop Tools and Development Environment, MATLAB Version 7.0.4 (R14SP2)

100
Startup and Shutdown

Confirmation Dialog Box for Quitting Added
When quitting MATLAB, a confirmation dialog box appears if you set a new
preference for that purpose. By default, the confirm quitting preference is not
set, so the dialog box will not appear. To change the preference, see the
instructions for Confirmation Dialogs in the desktop documentation.

JVM Updated
MATLAB is now using Java (JVM) 1.5 on Windows, Linux (32-bit), and Solaris
platforms. Java is supplied with MATLAB, so this change requires no action on
your part.

Compatibility Considerations. If you use a specific version of Java with MATLAB
on Windows, Linux 32-bit, or Solaris platforms, this change might affect you.

Desktop

Confirmation Dialog Boxes Preference Introduced
There are new preferences for displaying or not displaying confirmation dialog
boxes for desktop tools. In previous versions, some of these preferences existed
but were located with other preferences for the associated desktop tool. They
are now organized in one preference panel for all desktop tools. Access them by
selecting File -> Preferences -> General -> Confirmation Dialogs. These
preferences work in conjunction with the Do not show this prompt again
check boxes that appears on various desktop confirmation dialog boxes. For
more information, see Confirmation Dialogs in the desktop documentation.

Running Functions—Command Window and History

Overwrite Mode Now Supported
The Command Window now supports overwrite mode. Press the Insert key to
enter text in overwrite mode. Press the Insert key again to return to entering
text in insert mode. View the current state at the far right end of the status bar
of the Command Window when it is undocked, or in the desktop when the
Command Window is docked and has focus. In insert mode, OVR in the status
bar is gray and the cursor has a wide block shape.

MATLAB Release Notes
Hyperlink Color Preference Added
Set the color of hyperlinks that display in the Command Window. Select File
-> Preferences -> Command Window, and under Display, select Hyperlink
color.

Help

Subfunction Help Syntax Changed
To get help for a subfunction, use

help functionname>subfunctionname

Compatibility Considerations. In previous versions, the syntax was help
functionname/subfunctionname. This change was introduced in R14
(MATLAB 7.0) but was not documented.

Bug Fixes and Known Problems Now on Web; No Longer Found Via Help
Search
The Release Notes sections “Major Bug Fixes” and “Known Software and
Documentation Problems” no longer include the content in the installed help
files. Instead the sections provide links to these lists on the MathWorks Web
site. The lists on the Web site can be updated after the release date to reflect
the latest information.

Compatibility Considerations. As a result of this change, the Help browser Search
feature will not find search terms that are in the content of those reports. Use
the MathWorks Web site search features to look for search terms in those
reports.

Workspace, Search Path, and File Operations

Formatting Decimal Separator when Copying From the Array Editor
You can now specify how you want decimal numbers to be formatted when you
cut or copy cells from the Array Editor and paste them into text files or other
applications. You can specify a separator for this purpose in the Array Editor
panel of the Preferences dialog. The Decimal separator to use when copying
edit field is by default “.” (period). If you are working in or providing data to a
101

Desktop Tools and Development Environment, MATLAB Version 7.0.4 (R14SP2)

102
locale that uses a different character to delimit decimals, type that character
in this edit field and click OK or Apply.

Workspace Browser Preference Panel Removed
The Workspace browser preferences panel was removed. The entry on that
panel was for confirming deletion of variables. That preference is now part of
General > Confirmation Dialogs preferences.

Compatibility Considerations. Use File > Preferences > General > Confirmation
Dialogs instead of File > Preferences > Workspace Browser.

Current Directory Browser Preferences Added
There are new Current Directory browser preferences you can access by
selecting File -> Preferences -> Current Directory Browser, Browser
display options:

• View the file size by selecting the Show file sizes check box. (This is selected
by default.)

• View brief Simulink model descriptions in the Description column when
Show M and MDL file descriptions is selected.

• View the complete Simulink model description in the lower pane when the
preference for Show M, MDL and MAT file contents is selected. This allows
you to view information about a model without running Simulink.

Editing and Debugging M-Files

Go To Subfunction or Nested Function
Go directly to a subfunction or nested function within an M-file using the
enhanced Go To dialog box. Access the dialog box by selected Edit -> Go To.
Click the Name column header to arrange the list of functions alphabetically,
or click the Line column header to arrange the list by the position of the
functions in the file.

Help Browser Now Accessible from MATLAB Stand-Alone Editor
You can now access the MATLAB Help browser from the MATLAB stand-alone
Editor. This provides you with documentation for MATLAB, including using
Editor features and MATLAB functions.

MATLAB Release Notes
Preference for Editor/Debugger Dialog Moved
The Show dialog prompt preference has been moved to Preferences - >
General -> Confirmation Dialogs. For more information, see Confirmation
Dialogs in the desktop documentation.

Compatibility Considerations. Use File > Preferences > General > Confirmation
Dialogs instead of File > Preferences > Editor/Debugger to set this
preference.

Dragging Text Maintains Font and Highlighting
Now, when you drag text from the Editor/Debugger to another application, it
maintains the syntax highlighting and font characteristics.

Source Control Interface

Register Project Feature Added; Add to Source Control Behavior Changed
There is a new source control interface feature for Windows platforms,
Register Project with MATLAB. Use this to associate all files in a directory
with a source control project. You perform this for any file in a directory, which
registers the directory and all files in that directory. You only perform this once
in a directory, and must perform it before you perform any other source control
actions for files in that directory.

Access the feature in the Current Directory browser by right-clicking a file and
selecting Source Control -> Register Your Source Control System Project
with MATLAB from the context menu. You can also access it from the
Editor/Debugger File menu. To access the feature for Simulink or Stateflow®
files, use the Current Directory browser.

For a summary of the process, see the topic “Source Control Interface on
Windows Platforms” in the desktop documentation.

Compatibility Considerations. In previous releases, this feature was part of the
Add to Source Control feature. You still need to add each file to source control,
but you do this after first registering the directory that contains the file.

Project Name Exact Match No Longer Required
The name of the project in the source control system is no longer required to
exactly match the name of the directory on disk containing the files.
103

Desktop Tools and Development Environment, MATLAB Version 7.0.4 (R14SP2)

104
Publishing Results

Cell Publishing: File Extension Changes
The files created when publishing using cells now have more natural
extensions. JPEG-files now have a .jpg instead of a .jpeg extension, and
EPSC2-files now have an .eps instead of an .epsc2 extension.

Compatibility Consideration. If you relied on the formerly used file extensions, you
need to accommodate the changes.

Cell Publishing: LaTeX Image File Type Changes
Publishing to LaTeX now respects the image file type you specify in preferences
rather than always using EPSC2-files.

Cell Publishing: Image Options More Restrictive
The Publish image options in Editor/Debugger preferences for Publishing
Images have changed slightly. The changes prevent you from choosing invalid
formats.

Notebook Support for Word 97 to be Discontinued
Notebook will no longer support Microsoft Word 97 starting in the next release
of MATLAB.

Compatibility Considerations. If you use Word 97 with Notebook, you will need to
migrate to a more recent version.

MATLAB Release Notes
Mathematics, MATLAB Version 7.0.4 (R14SP2)
This version introduces the following new features and changes:

• New Vendor BLAS Used for Linear Algebra in MATLAB

• max and min on Complex Integers Not Supported

New Vendor BLAS Used for Linear Algebra in
MATLAB
MATLAB uses Basic Linear Algebra Subprograms (BLAS) for its vector inner
product, matrix-vector product, matrix-matrix product, and triangular solvers
in \. MATLAB also uses BLAS behind its core numerical linear algebra
routines from Linear Algebra Package (LAPACK), which are used in functions
like chol, lu, qr, and within the linear system solver \.

Starting in this release

• On Macintosh, MATLAB now uses the Accelerate framework.

• On 64-bit Linux, MATLAB uses Intel® Math Kernel Library (MKL) 7.0.1 on
Intel chips, and AMD Core Math Library (ACML) 2.0 on AMD chips.

max and min on Complex Integers Not Supported
Using the max and min functions on complex integer inputs (as shown in the
example below) is no longer supported. This operation had been supported from
release R11 through R14sp1, but now returns an error.

max(int8([3-4i 3+4i]))

Compatibility Considerations
Any code that calls max or min on complex integers should be removed from your
program files.
105

Mathematics, MATLAB Version 7.0.4 (R14SP2)

106

MATLAB Release Notes
Programming, MATLAB Version 7.0.4 (R14SP2)
This version introduces the following new features and changes:

• Memory-Mapping

• textscan Enhancements

• xlsread Enhancements

• xlsread Imported Date Format Changes

• format Options Added

• Nonscalar Arrays of Function Handles to Become Invalid

• Assigning Nonstructure Variables As Structures Displays Warning

Memory-Mapping
Memory-mapping is a mechanism that maps a portion of a file, or an entire file,
on disk to a range of addresses within an application's address space. The
application can then access files on disk in the same way it accesses dynamic
memory. This makes file reads and writes faster in comparison with using
functions such as fread and fwrite.

Another advantage of using memory-mapping in MATLAB is that it enables
you to access file data using standard MATLAB indexing operations. Once you
have mapped a file to memory, you can read the contents of that file using the
same type of MATLAB statements used to read variables from the MATLAB
workspace. The contents of the mapped file appear as if they were an array in
the currently active workspace. You simply index into this array to read or
write the desired data from the file.

Memory-mapped files also provide a mechanism for sharing data between
applications. This is achieved by having each application map sections of the
same file. This feature can be used to transfer large data sets between
MATLAB and other applications.

textscan Enhancements
The textscan function originally read data only from files. As of this release,
you can use textscan to read from strings as well.
107

Programming, MATLAB Version 7.0.4 (R14SP2)

108
xlsread Enhancements
In this release, you can write a function and pass a handle to this function to
xlsread. When xlsread executes, it reads from the spreadsheet, executes your
function on the data read from the spreadsheet, and returns the final results
to you.

You can use either of the following syntaxes:

num = xlsread('filename', ..., functionhandle)
[num, txt, raw, X] = xlsread('filename', ..., functionhandle)

See Example 5 — Passing a Function Handle on the xlsread reference page.

xlsread Imported Date Format Changes
In MATLAB versions prior to R14, date values read into MATLAB from an
Excel spreadsheet using xlsread were always imported as numeric date
values. The R14 and later releases of MATLAB import dates in the format in
which they were stored in the Excel file. Dates stored in string or date format
are now imported as strings by xlsread. Dates stored in numeric format are
imported as numeric date values.

Compatibility Considerations
Because of a difference in the way Excel and MATLAB compute numeric date
values, any numeric dates imported from Excel into MATLAB must be
converted to the MATLAB format before being used in the MATLAB
application. See “Handling Excel Date Values” on the function reference for
xlsread for information on how to do this.

MATLAB Release Notes
format Options Added
You can display MATLAB output using two new formats: short eng and long
eng. See the format reference page for more information.

• short eng — Displays output in an engineering format that has at least 5
digits and a power that is a multiple of three.

• long eng — Displays output in an engineering format that has exactly 16
significant digits and a power that is a multiple of three.

format short eng
pi
ans =
 3.1416e+000

format long eng
pi
ans =
 3.14159265358979e+000

Nonscalar Arrays of Function Handles to Become
Invalid
Creation of nonscalar arrays of function handles by str2func may be invalid or
may return different results in future versions of MATLAB, but will continue
to work in R14.

Compatibility Considerations
To avoid this warning and prepare for this change, convert the cell array of
strings to a cell array of function handles.

For more information, type help function_handle and see the section entitled
Note on Backward Compatibility.
109

Programming, MATLAB Version 7.0.4 (R14SP2)

110
Assigning Nonstructure Variables As Structures
Displays Warning
Assigning to a nonstructure variable as if it were a structure is not
recommended in MATLAB. For example, if variable x holds a double (as shown
below), then attempting to add a fieldname to it, thus converting x to a
structure, is not good programming practice and should generate an error.

x = 10;
x.name = magic(3);

Note that if x were empty (i.e., x == []), then assigning a field to it as if it were
already a structure is acceptable.

Behavior Prior to Release R14
Because of a bug in releases of MATLAB prior to R14, you can assign a field to
a nonempty, nonstructure variable in those releases without MATLAB
generating a warning message or error. The result is that MATLAB quietly
converts the variable to a structure:

x = 10;
class(x)
ans =
 double

x.name = magic(3); % Invalid expression completes
 % without warning or error.
class(x)
ans =
 struct

Behavior In R14 and Later
In the MATLAB R14 and R14 service pack releases, you can still perform this
type of operation, but MATLAB now displays a warning message:

x = 10;
x.name = magic(3);

Warning: Struct field assignment overwrites a value with class
"double".

MATLAB Release Notes
In a future release of MATLAB, attempting this type of operation will throw an
error instead of just displaying a warning message.

Compatibility Considerations
You are encouraged to modify any code that generates this warning. The
section “Making a Valid Assignment” gives instructions on how to do this.

Another Case — Extending the Depth of a Structure
The same rules apply when extending the depth of a structure by adding
additional, lower-level fields. The first line of the example shown below creates
a structure named handle and assigns to it a field of type double named
output. The line after that treats this double as if it were a structure by
attempting to assign a field named time to it. The second line is an invalid
expression:

handle.output = 5;
handle.output.time = 13;

As in the case discussed earlier, this assignment does not generate a warning
or error in MATLAB releases prior to R14. In the R14 and R14 service pack
releases of MATLAB, you get the warning shown in the previous example.
Beginning in a future release of MATLAB, this assignment will throw an error.

Making a Valid Assignment
To avoid this warning and future errors, first make x an empty structure or
empty array as shown here. Once a variable is established as a structure or
empty array, you can assign fields to it without getting an error:

x = struct; or x = [];
x.name = magic(3);

In the case of extending the depth of an existing structure, you can perform this
type of assignment without generating a warning or error using the struct
function as shown here:

handle.output = struct('time', 13);
111

Programming, MATLAB Version 7.0.4 (R14SP2)

112

MATLAB Release Notes
Graphics and 3-D Visualization, MATLAB Version 7.0.4
(R14SP2)

This version introduces the following new feature:

imwrite Now Supports GIF Export
The imwrite function now supports exporting image data in Graphics
Interchange Format (GIF).

Compatibility Considerations
The MATLAB 7.0.4 graphics features have the the following platform
limitations:

Cannot Dock Figures on Macintosh
You cannot dock figures in the Desktop, because MATLAB uses native figure
windows on the Macintosh platform.

Plotting Tools Not Working on Macintosh
The plotting tools are not supported on the Macintosh platform. This means the
Figure Palette, Plot Browser, and Property Editor do not work these platforms.
To use the MATLAB 6 Property Editor, see the propedit command.

Not All Macintosh System Fonts Are Available
MATLAB figures do not support the same fonts as native Macintosh
applications. Use the uisetfont functions to see which fonts are available in
MATLAB.

XDisplay Property Setable on Motif-Based Systems
You can specify the value of the figure XDisplay property only on systems
using Motif-Based figure windows.
113

Graphics and 3-D Visualization, MATLAB Version 7.0.4 (R14SP2)

114

MATLAB Release Notes
Creating Graphical User Interfaces (GUIs), MATLAB Version
7.0.4 (R14SP2)

New Callbacks Chapter
The Creating Graphical User Interfaces documentation offers a new chapter,
in draft form, that attempts to bring information regarding callbacks into one
place. It introduces the concepts and mechanisms with which you work, and
explains some basic techniques for programming your GUI's behavior. This
chapter is not yet complete, but you may find it useful, even in its current state,
particularly if you are new to creating GUIs.

Temporarily, this new chapter appears as Appendix A, "Working with
Callbacks (Draft)." It contains some new information, but also duplicates
information that can be found in various places throughout the rest of the book.
In cases where information has not yet been included in the new chapter, links
take you to the main part of the book.
115

Creating Graphical User Interfaces (GUIs), MATLAB Version 7.0.4 (R14SP2)

116

MATLAB Release Notes
External Interfaces/API, MATLAB Version 7.0.4 (R14SP2)
New features and changes introduced in this version are described here.

New File Archiving Functions and Functionality
In addition to being able to zip and unzip compressed file archives, MATLAB
now supports the following archiving functions:

• gzip/gunzip — Compress/uncompress files in gzip format.

gunzip reads archives from both file systems and URLs.

• tar/untar — Compress/extract files in a tar-file.

untar reads archives from both file systems and URLs.

• The unzip function can now also open a zip archive from a URL.
117

External Interfaces/API, MATLAB Version 7.0.4 (R14SP2)

118

MATLAB Release Notes
Version 7.0.1 (R14SP1)
MATLAB

This table summarizes what’s new in Version 7.0.1 (R14SP1):

New features and changes introduced in this version are organized by these
areas:

• Desktop Tools and Development Environment, MATLAB Version 7.0.1
(R14SP1)

• Mathematics, MATLAB Version 7.0.1 (R14SP1)

• Programming, MATLAB Version 7.0.1 (R14SP1)

• Graphics, MATLAB Version 7.0.1 (R14SP1)

• Creating Graphical User Interfaces (GUIs), MATLAB Version 7.0.1
(R14SP1)

• External Interfaces/API, MATLAB Version 7.0.1 (R14SP1)

New Features
and Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related Documentation
at Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations in
descriptions of new
features and
changes. See also
Summary.

Fixed bugs No
119

120

MATLAB Release Notes
Desktop Tools and Development Environment, MATLAB
Version 7.0.1 (R14SP1)

New features and changes are organized by these topics:

• Startup and Shutdown

• Desktop

• Running Functions—Command Window and Command History

• Help

• Workspace, Search Path, and File Operations

• Editing and Debugging M-Files

• Source Control Interface

• Publishing Results

Startup and Shutdown

Constructing Java Classpath Now Uses librarypath
When MATLAB starts, it now uses librarypath.txt as well as classpath.txt
to construct the Java classpath.

Compatibility Considerations. If you call Java from MATLAB, refer to Locating
Native Method Libraries in the MATLAB External Interfaces documentation
for details. This change was part of MATLAB 7.0.

Desktop

System Web Browser Used for Large Files
The MATLAB Web browser displays files up to 1.5MB. When the Web browser
tries to open a file greater than 1.5MB, MATLAB instead automatically
displays the file in the system default browser.

Keyboard Access Added for More Desktop Tools
Additional desktop tools provide keyboard access to toolbar buttons and fields
via mnemonics. For example, Alt+K moves the cursor to the Stack field in the
Editor/Debugger toolbar. In the Profiler, the R in the Run this code toolbar
field is underlined, indicating that Alt+R moves the cursor to this field. You
121

Desktop Tools and Development Environment, MATLAB Version 7.0.1 (R14SP1)

122
might need to hold down the Alt key while the tool is selected in order to see
the mnemonics on the menus and buttons.

Macintosh Menus
On the Macintosh, the location of MATLAB menus has changed. In this
version, MATLAB menus are not located at the top of the screen with other
Macintosh screen menus. Instead, MATLAB menus appear within the
MATLAB desktop and MATLAB tools. This change was made because of a
problem with screen menus that caused MATLAB on the Macintosh to crash.

Running Functions—Command Window and
Command History

Preferences for Parentheses Matching Added
There are now Command Window preferences you can set to perform
parenthesis matching. Select File -> Preferences -> Command Window ->
Keyboard and Indenting to set them. With the preference Match
parentheses while typing selected, when you type a parenthesis or another
delimiter, MATLAB highlights the matched parenthesis or other delimiter in
the pair. With the preference Match parentheses on arrow key or mouse
movement selected, when you move over a parenthesis or another delimiter,
MATLAB highlights the matched parenthesis or other delimiter in the pair.
MATLAB also alerts you to mismatches. These preferences also allow you to
specify how MATLAB notifies you of matches and mismatches.

Clear Command Window Now Available from Context Menu
You can now select Clear Command Window from the context menu in the
Command Window. A confirmation dialog box does not appear and the
Command Window clears immediately. If you want a confirmation dialog box
to appear before the Command Window clears, use Edit -> Clear Command
Window instead.

End Key Behavior Changes
With the Display preference for Wrap lines selected, pressing End moves the
cursor to the end of the current statement. When the Command line key
bindings preference is set to Emacs (MATLAB standard), you can also do this
using Ctrl+E. In the previous version, End (and Ctrl+E) moved the cursor to
the end of the current line.

MATLAB Release Notes
Help

Own Help Files Now Allow Special Icons
When you supply your own help files, you can now specify the type of icon that
appears in the Help browser Contents pane via the <help_contents_icon> tag
in the info.xml file. For details, see “Adding Your Own Help Files in the Help
Browser”.

Workspace, Search Path, and File Operations

Array Editor: F2 Keyboard Shortcut Added to Edit Current Element
A keyboard shortcut to use instead of double-clicking a cell is F2 (or Ctrl+U on
Macintosh), which allows you to edit the current element, positioning the
cursor at the end of the element.

Array Editor: Single Quotation Marks Now Supplied for Strings During
Paste from Excel
When you copy data from Microsoft Excel and paste it into a cell array in the
Array Editor using the menu item Edit -> Paste Excel Data, MATLAB
assumes the values are strings and automatically supplies the single quotation
marks if they cannot be interpreted as numeric values.

Current Directory Browser Comments Now Include First Line
When you select the Current Directory preference Show M-file comments and
MAT-file contents, the help shown now includes the first comment line (also
called the H1 line).

Current Directory Browser Auto-Refresh Rate Now Specifiable
The Current Directory browser preference for auto-refresh now allows you to
specify the update time. By default, every 2 seconds the Current Directory
browser checks for and reflects any changes you made to files and directories
in the current directory using other applications.

In some cases when the current directory is on a network and the Current
Directory browser is open, MATLAB becomes slow because of the auto-refresh
feature. If you experience general slowness in MATLAB and have the Current
Directory browser open, increase the default update time to improve
responsiveness. If increases do not alleviate the slowness enough, clear the
123

Desktop Tools and Development Environment, MATLAB Version 7.0.1 (R14SP1)

124
check box in preferences to turn auto-refresh off. Then you can manually
refresh the display selecting Refresh from the context menu in the Current
Directory browser.

Find Files Field Now Uses Selected Text
You can now select text in the Command Window or Editor and the Find Files
dialog box enters that text in its Find files containing text field.

Editing and Debugging M-Files

Breakpoints Supported in Anonymous Functions
The Editor/Debugger supports breakpoints in anonymous functions. Lines
containing anonymous functions can have more than one breakpoint in a line:
one for the start of the line and one for each anonymous function in the line. A
line that contains multiple breakpoints has a blue breakpoint icon.

dbstatus Supports Anonymous and Nested Functions
The dbstatus function now supports anonymous and nested functions,
including a new '-completenames' argument. Running
dbstatus('-completenames') displays, for each breakpoint, the absolute
filename and the sequence of functions that nest the function containing the
breakpoint.

Colors Now Maintained when Copying From Editor
When you paste a selection from the Editor into another application, such as
Word, the Editor now maintains the syntax highlighting colors in the file in the
other application. MATLAB pastes the selection to the clipboard in RTF
format, which many Windows and Macintosh applications support.

Open Selection Now Works for Current Cursor Position
In an M-file, position the cursor within a subfunction, function, file, variable,
or Simulink model, and press Ctrl+D (or right-click and select Open
Selection). The item opens in the appropriate tool. In the previous version of
MATLAB, you had to select the complete name in the M-file to use this feature.
See “Opening a Selection in an M-File” for more information.

MATLAB Release Notes
Source Control Interface

verctrl Function Does Not Support Handle
The verctrl function, available for Windows platforms only, was documented
incorrectly. The documentation stated that you could create a handle, and
showed the handle argument in the function syntax. You cannot create a
handle, but must instead use a value of 0 for that field.

Publishing Results

Notebook Causes MATLAB to Become Automation Server
If you run Notebook from MATLAB and MATLAB is not an automation server,
MATLAB will become an automation server. This is a change from Release 14,
where MATLAB spawned a second instance that was an automation server.

Notebook Now Supports Office 2003
Notebook now supports Office 2003 (for XP); it is one of the notebook -setup
options.

Notebook Support for Word 97 to Be Discontinued
Word 97 is supported in this release, but will not be supported in future
releases.

Compatibility Considerations. If you use Word 97 with Notebook, move to a newer
version of Word before moving to the next version of MATLAB.
125

Desktop Tools and Development Environment, MATLAB Version 7.0.1 (R14SP1)

126

MATLAB Release Notes
Mathematics, MATLAB Version 7.0.1 (R14SP1)
This version introduces the following new features and changes:

• New Function — ordeig

• More Functions Accept Single-Precision Data Inputs

• New Vendor BLAS Used for Linear Algebra in MATLAB

• Overriding the Default BLAS Library on Sun/Solaris Systems

• FDLIBM Version Upgraded

• Different Results When Solving Singular Linear Systems on Intel Systems;
Inconsistent NaN Propagation

• funm Returns Status Information; New Output Might Result In Error

New Function — ordeig
The new function ordeig takes a quasitriangular matrix T or matrix pair (A,B)
and returns the vector of eigenvalues in the same order that they appear down
the diagonal of T or (A,B). You can use ordeig with the functions ordschur and
ordqz, which reorder the eigenvalues of a Schur factorization or a QZ
factorization, respectively.

More Functions Accept Single-Precision Data Inputs
More MATLAB functions now accept single-precision data inputs in addition
to the usual double-precision inputs. To determine whether a function works
on single precision inputs, look for the Class support line in the M-file help
for the function. For example, to determine whether the function mean accepts
single-precision inputs, type

help mean

The Class support line is

float: double, single

which tells you that mean does accept single-precision inputs.
127

Mathematics, MATLAB Version 7.0.1 (R14SP1)

128
New Vendor BLAS Used for Linear Algebra in
MATLAB
MATLAB uses Basic Linear Algebra Subprograms (BLAS) for its vector inner
product, matrix-vector product, matrix-matrix product, and triangular solvers
in \. MATLAB also uses BLAS behind its core numerical linear algebra
routines from Linear Algebra Package (LAPACK), which are used in functions
like chol, lu, qr, and within the linear system solver \.

On some platforms, MATLAB continues to use ATLAS BLAS.

Starting in Release 14, MATLAB 7.0 uses vendor BLAS from the vecLib library
on the Mac.

Starting in Release 14 with Service Pack 1, MATLAB 7.0.1 uses vendor BLAS
from

• The Intel® Math Kernel Library (MKL) Version 7.0 on Intel chips running
both Windows and Linux. See the MATLAB 7.0 Release Notes for how to use
the multi-threaded capabilities of MKL.

• The AMD Core Math Library (ACML) Version 2.0 library on AMD chips,
native 64 bit application

Overriding the Default BLAS Library on Sun/Solaris
Systems
MATLAB uses the Basic Linear Algebra Subroutines (BLAS) libraries to speed
up matrix multiplication and LAPACK-based functions like eig, svd, and \
(mldivide). At start-up, MATLAB selects the BLAS library to use.

For Release 14 with Service Pack 1, MATLAB still uses the ATLAS BLAS
libraries on the Sun Microsystems Solaris Operating System. However, you
can switch the BLAS library that MATLAB uses to the Sun Performance
Library (Sunperf) BLAS, provided by Sun Microsystems.

If you want to take advantage of the potential performance enhancements
provided by the Sun BLAS, you can set the value of the environment variable
BLAS_VERSION to the name of the Sun Performance Library, libsunperf.so.4.
MATLAB uses the BLAS specified by this environment variable, if it exists.

MATLAB Release Notes
To set the BLAS_VERSION environment variable, enter the following
command at the at the UNIX prompt.

% setenv BLAS_VERSION libsunperf.so.4

Then start MATLAB as usual.

To get visual feedback that the BLAS version has changed, also type at the
UNIX prompt

% setenv LAPACK_VERBOSITY 1

before starting MATLAB. This will display diagnostic information while
MATLAB is starting up, for example:

cpu_id: sun4u
libmwlapack: loading libsunperf.so.4
libmwlapack: loading lapack.so

FDLIBM Version Upgraded
In Release 14, MATLAB used FDLIBM Version 5.2. In R14sp1, MATLAB has
been upgraded to use FDLIBM Version 5.3.

Different Results When Solving Singular Linear
Systems on Intel Systems; Inconsistent NaN
Propagation
In previous releases, when you solved n-by-n linear systems Ax=b using x =
A\b, where A is singular or contains NaN, the computed result x often contained
NaN. In Version 7.0.1, the same command might return 0 in x, due to the way
the Intel® Math Kernel Library (MKL) implementation of the BLAS handles
this operation.
129

Mathematics, MATLAB Version 7.0.1 (R14SP1)

130
Compatibility Considerations
Code that relies on the result containing NaN should check for the following
warnings instead:

• For singular A, an existing warning is issued.
x = [1 2; 0 0]\[1; 0]
Warning: Matrix is singular to working precision.
x =
 1
 0

• For A that contains NaN, a new warning message is issued.

x = [1 2; 0 NaN]\[1; 0]
Warning: Matrix is singular, close to singular or badly scaled.
Results may be inaccurate. RCOND = NaN.
x =
 1
 0

funm Returns Status Information; New Output
Might Result In Error
Prior to Release 14, the second output of the function funm was an error
estimate that was sometimes inaccurate. In Release 14, Version 7.0, the second
output was replaced by an exit flag that indicates whether the computation
was successful.

Compatibility Considerations
Code that was created prior to Release 14 and that uses the second output of
funm, might not work correctly in Version 7.0 or later.

MATLAB Release Notes
Programming, MATLAB Version 7.0.1 (R14SP1)
This version introduces the following new features and changes:

• Character Set Conversion Functions Added

• datevec Support of Empty String Argument

• depfun Function Supports New Options

• ftell Returning Invalid Position in Rare Cases

• fwrite Saves uint64 and int64 Types

• mat2str Enhanced to Work with Non-double Types

• nargin, nargout Operate on Function Handles

• regexprep Now Supports Character Representations in Replacement String

• Logical OR Operator | in regexp Expressions Might Yield Different Results
from Previous Version

• Multiple Declarations of Persistent Variables No Longer Supported

Character Set Conversion Functions Added
Unicode is becoming the preferred internal presentation of characters in
MATLAB. For example, MATLAB functions such as disp require an input
string in Unicode to display properly. To facilitate the use of different character
sets, MATLAB provides two new functions to convert characters from a native
character set to Unicode and back.

The native2unicode function converts from either a default, or user specified,
native character set to Unicode. The unicode2native function does the
opposite, converting from Unicode to either a default, or user specified, native
character set. Note that any MATLAB string containing only US-ASCII
characters does not require any conversion.

Type doc native2unicode or doc unicode2native for more information on
these functions.

datevec Support of Empty String Argument
For the purpose of backwards compatibility, invoking the command
datevec('') now returns an empty vector.
131

Programming, MATLAB Version 7.0.1 (R14SP1)

132
Compatibility Considerations
This behavior was not intentional in previous versions of MATLAB, and it is
subject to change in future releases.

depfun Function Supports New Options
The depfun function now supports these options:

Option Description

'-all' Computes all possible left-side arguments and
displays the results in the report(s). Only the
specified arguments are returned.

'-calltree' Returns a call list in place of a called_from list.
This is derived from the called_from list as an
extra step.

'-expand' Includes both indices and full paths in the call or
called_from list.

'-print', 'file' Prints a full report to file.

'-quiet' Displays only error and warning messages, and not
a summary report.

'-toponly' Examines only the files listed explicitly as input
arguments. It does not examine the files on which
they depend.

'-verbose' Outputs additional internal messages.

MATLAB Release Notes
ftell Returning Invalid Position in Rare Cases
The ftell function is likely to return an invalid position when all of the
following are true. This is due to the way in which the Microsoft Windows C
library currently handles its ftell and fgetpos commands:

• The file you are currently operating on is an ASCII text file.

• The file was written on a UNIX-based system, or uses the UNIX-style line
terminator: a line feed (with no carriage return) at the end of each line of
text. (This is the default output format for MATLAB functions dlmwrite and
csvwrite.)

• You are reading the file on a Windows system.

• You opened the file with the fopen function with mode set to 'rt'.

• The ftell command is directly preceded by an fgets command.

Note that this does not affect the ability to accurately read from and write to
this type of file from MATLAB.

Compatibility Considerations
This represents a change in behavior.

fwrite Saves uint64 and int64 Types
The fwrite function can now save uint64 and int64 values. Previously fwrite
supported these data types only on DEC Alpha systems. Now, it works on all
supported MATLAB platforms.

mat2str Enhanced to Work with Non-double Types
In MATLAB 7.0.1, you can use the mat2str function to convert nondouble data
types to a string that represents the input value. Type doc mat2str for more
information.

nargin, nargout Operate on Function Handles
The nargin and nargout functions now accept a either a function name or
function handle as an input argument. When called with a function handle,
nargin and nargout return the number of input or output arguments you can
pass to or receive from the function that the handle maps to.
133

Programming, MATLAB Version 7.0.1 (R14SP1)

134
regexprep Now Supports Character
Representations in Replacement String
The regexprep function now supports the use of character representations
(e.g., '\t' for tab, '\n' for newline) in replacement strings. For example, the
following regexprep command replaces the | character with two horizontal
tabs:

str = 'Field 1 | Field 2 | Field 3';
regexprep(str, '\|', '\t\t')
ans =

Field 1 Field 2 Field 3

In Version 6, the same command yielded the string

Field 1 \t\t Field 2 \t\t Field 3

Logical OR Operator | in regexp Expressions Might
Yield Different Results from Previous Version
Be careful about using the logical OR (|) operator within square brackets (e.g.,
[A|B]) in regular expressions in MATLAB. The recommended way to match
"the letter A or the letter B" in a MATLAB regexp expression is to use '[AB]'.

Compatibility Considerations
If you have used '[A|B]' for this purpose in earlier versions of MATLAB, you
may get unexpected results when you run your code in version 7.0.

MATLAB versions 6.0 and 6.5 treat | as an ordinary character when it is used
between square brackets. For example, these versions interpret the expression
'[A|B]' as "match 'A', or match '|', or match 'B'." MATLAB 7.0 correctly
gives precedence to the logical OR functionality of the | operator. Because of
this change, MATLAB now interprets '[A|B]' as "match '[A', or match 'B]'."

You can avoid the effects of this bug fix altogether by using the recommended
syntax '[AB]' for this type of operation. This syntax returns the correct results
in all MATLAB versions.

MATLAB Release Notes
The following example attempts to find the word Jill or Bill in the string 'My
name is Bill'. The syntax used in the expression is incorrect, but regexp in
MATLAB 6.5 finds a match anyway because of the software bug. This syntax
does not work in version 7.0 or 7.0.1 because MATLAB now interprets the
expression as the logical OR of the two statements, '[J' and 'B]ill':

 MATLAB 6.5 MATLAB 7.0.1
str = 'My name is Bill'; str = 'My name is Bill';
expr = '[J|B]ill'; expr = '[J|B]ill';
[s e] = regexp(str, expr); [s e] = regexp(str, expr);
str(s:e) str(s:e)
ans = ans =
 Bill Empty string: 1-by-0

Using the recommended syntax returns the correct results in all MATLAB
versions:

str = 'My name is Bill';
expr = '[JB]ill';
[s e] = regexp(str, expr);
str(s:e)
ans =
 Bill

If you want to use | in an expression as an ordinary character, precede it with
a backslash:

str = 'The | operator performs a logical OR';
expr = 'The [\$ \| \#] operator';
[s e] = regexp(str, expr);
str(s:e)
ans =
 The | operator

Multiple Declarations of Persistent Variables No
Longer Supported
You can no longer declare a variable as persistent more than once within a
function.

Compatibility Considerations
If you do this, you will need to modify your code.
135

Programming, MATLAB Version 7.0.1 (R14SP1)

136

MATLAB Release Notes
Graphics, MATLAB Version 7.0.1 (R14SP1)
This version introduces the following new feature:

OpenGL Trouble Shooting
The opengl command now enables you to switch from hardware to
software-based OpenGL rendering. It also enables you to select various known
bug workarounds. See the opengl reference page for more information.

Compatibility Considerations

Cannot Dock Figures on Macintosh
You cannot dock figures in the Desktop, because MATLAB uses native figure
windows on the Macintosh platform.

Plotting Tools Not Working on Macintosh
The plotting tools are not supported on the Macintosh platform. This means the
Figure Palette, Plot Browser, and Property Editor do not work these platforms.
To use the MATLAB 6 Property Editor, see the propedit command.

Not All Macintosh System Fonts Are Available
MATLAB figures do not support the same fonts as native Macintosh
applications. Use the uisetfont functions to see which fonts are available in
MATLAB.

Preview Java Figures on the Macintosh
You can preview the use of Java Figure on the Macintosh by starting MATLAB
with the -useJavaFigures option.
137

Graphics, MATLAB Version 7.0.1 (R14SP1)

138

MATLAB Release Notes
Creating Graphical User Interfaces (GUIs), MATLAB Version
7.0.1 (R14SP1)

This version introduces the following new features and changes:

• FIG-File Format Change

• Panels, Button Groups, and ActiveX Components

• Comments Now Optional for Newly Generated Callback Functions

• Windows XP Display of Push and Toggle Buttons

FIG-File Format Change
GUI FIG-files that are created or modified with MATLAB 7.0 or a later
MATLAB version are not automatically compatible with Version 6.5 and
earlier versions.

• GUIs Saved from GUIDE or from the Command Line: You can check the
Ensure backward compatibility (-v6) preference in the Preferences
dialog box under General -> MAT-Files. When this preference is checked,
all MAT-files are saved so as to be backward compatible with Version 6.5 and
earlier versions.

• Alternative for GUIs Saved from the Command Line: If you do not want to
check the MAT-Files preference described above, but want to make
individual GUI FIG-files backward compatible, use the 'v6' argument when
you save the GUI with the hgsave function.

Compatibility Considerations
To make FIG-files, which are a kind of MAT-file, backward compatible, you
must explicitly specify that you want the backwards compatibility.

Panels, Button Groups, and ActiveX Components
Panels, button groups, and ActiveX components were introduced in
MATLAB 7.0. These components are not compatible with versions earlier than
7.0.
139

Creating Graphical User Interfaces (GUIs), MATLAB Version 7.0.1 (R14SP1)

140
Compatibility Considerations
You should not use these components in GUIs that you expect to run in earlier
MATLAB versions.

You can export a GUI that contains a panel, button group, or ActiveX
component from GUIDE to a single M-file that does not require a FIG-file.
However, you will not be able to run that M-file in MATLAB versions earlier
than 7.0.

Comments Now Optional for Newly Generated
Callback Functions
In prior releases, GUIDE automatically generated comment lines for each
callback that you added to an existing GUI M-file. For example:

% --- Executes during object deletion, before destroying properties.

function figure1_DeleteFcn(hObject, eventdata, handles)

% hObject handle to figure1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

Comment lines are now optional for most callbacks. If you want the comments
to be generated automatically when you add a callback, check the new
preference Add comments for newly generated callback functions on the
GUIDE panel of the Preferences dialog box. The factory default is checked.

If this preference is unchecked, GUIDE includes the comment lines only for
callbacks that are automatically included for the GUIDE template you chose.
No comments are included for any other callbacks that are added to the M-file.

Windows XP Display of Push and Toggle Buttons
Push buttons and toggle buttons with background colors other than the default
display differently in Windows XP.

Compatibility Considerations
For Windows XP, GUI push buttons are displayed with a white background. If
you have specified a background color other than the default, that color
appears as a border around the push button. Unselected toggle buttons are
displayed with the specified background color, but selected toggle buttons are
displayed with a white background bordered by the background color.

MATLAB Release Notes
External Interfaces/API, MATLAB Version 7.0.1 (R14SP1)
New features and changes introduced in this version are described here.

Function Handles in COM Event Callbacks
MATLAB now supports function handles as callbacks for ActiveX objects. This
example passes a function handle that maps to sampev to registerevent:

cd $matlabroot\toolbox\matlab\winfun
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200]);
registerevent(h, @sampev); % Click the control.

Registering Events for COM Servers and Controls
With MATLAB 7.0.1, you can register events for COM servers as well as for
COM controls.

Expanded Support for Web Services (SOAP and
WSDL)
This version expands MATLAB support for Web services, that is, Simple Object
Access Protocol (SOAP) and Web Services Description Language (WSDL).
These are some of the key enhancements:

• MATLAB now supports document style messages, in addition to the Remote
Procedure Call (RPC) style supported in version 7.0.

• MATLAB preserves the case in method, class, and object names.

• Web services functions now decode results that use Base64 encoding.

• The createClassFromWsdl function now supports WSDL files that define
multiple services.

Specifying the Search Path for Java Native Method
DLLs
The mechanism that MATLAB uses to locate native method libraries that are
required by Java has changed. MATLAB no longer uses system environment
variables to define the paths to these libraries.
141

External Interfaces/API, MATLAB Version 7.0.1 (R14SP1)

142
Compatibility Considerations
If you presently rely on the PATH (for Windows) or LD_LIBRARY_PATH (for UNIX)
environment variables for this purpose, you will need to use the file
librarypath.txt, as described below, in its place.

Specifying the Java Library Path
Java classes can dynamically load native methods using the Java method
java.lang.System.loadLibrary("LibFile"). In order for the JVM to locate
the specified library file, the directory containing it must be on the Java
Library Path. This path is established when MATLAB launches the JVM at
startup, and is based on the contents of the file

$matlab/toolbox/local/librarypath.txt

(where $matlab is the MATLAB root directory represented by the MATLAB
keyword matlabroot).

You can augment the search path for native method libraries by editing the
librarypath.txt file. Follow these guidelines when editing this file:

• Specify each new directory on a line by itself.

• Specify only the directory names, not the names of the DLL files. The
LoadLibrary call does this for you.

• To simplify the specification of directories in cross-platform environments,
you can use any of these macros: $matlabroot, $arch, and $jre_home.

MATLAB DDE Server Is Now Disabled By Default
To enable the DDE server start MATLAB with the /Automation option.

The outgoing MATLAB DDE commands (ddeinit, ddeterm, ddeexec, ddereq,
ddeadv, ddeunadv, ddepoke) function normally without the MATLAB DDE
server. See
http://www.mathworks.com/support/solutions/data/1-Q4728.html?solut
ion=1-Q4728 for more information.

Clearing MEX-Functions
The command clear mex now clears MEX-functions, but not M- and MEX-
functions. Entering clear mex does not clear locked functions or functions that

MATLAB Release Notes
are currently in use. It does however clear breakpoints and persistent
variables.
143

External Interfaces/API, MATLAB Version 7.0.1 (R14SP1)

144

MATLAB Release Notes
Version 7 (R14) MATLAB

This table summarizes what’s new in Version 7 (R14):

New features and changes introduced in this version are organized by these
areas:

• Desktop Tools and Development Environment, MATLAB Version 7 (R14)

• Mathematics, MATLAB Version 7 (R14)

• Programming, MATLAB Version 7 (R14)

• Graphics and 3-D Visualization, MATLAB Version 7 (R14)

• Creating Graphical User Interfaces (GUIs), MATLAB Version 7 (R14)

• External Interfaces/API, MATLAB Version 7 (R14)

New Features
and Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related Documentation
at Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations in
descriptions of new
features and
changes. See also
Summary.

Fixed bugs No
145

146

MATLAB Release Notes
Desktop Tools and Development Environment, MATLAB
Version 7 (R14)

New features and changes introduced in this version are organized by these
topics:

• Startup and Shutdown

• Desktop

• Running Functions—Command Window and Command History

• Help

• Workspace, Search Path, and File Operations

• Editing and Debugging M-Files

• Tuning and Managing M-Files

• Source Control Changes

• Publishing Results

Startup and Shutdown

JVM Version Updated
MATLAB is now using Java (JVM) 1.4.2.
147

Desktop Tools and Development Environment, MATLAB Version 7 (R14)

148
Desktop
New features and changes introduced in this version are

• Demo of MATLAB Desktop Added

• Arranging Documents Supports New Options

• Finding Files and Content in Files with New Tools

• MATLAB Shortcuts to Easily Run Group of Statements

• MATLAB Web Browser Added

• Menu Changes

• Keyboard Shortcuts Added to Go to Tools and Documents

• Drag and Drop Supported Between Desktop Tools

• Arranging Columns in Tools

• Font and Color Preferences for Tools

• terminal Function Removed

• license Function Results Modified Slightly

Demo of MATLAB Desktop Added
If you are using the Help browser, watch the new Desktop and Command
Window video demo for an overview of the major functionality.

Arranging Documents Supports New Options
The MATLAB desktop now provides you with new options for arranging the
following types of documents:

• M-files and other files in the Editor/Debugger

• Arrays in the Array Editor

• Figure windows

• HTML documents in the MATLAB Web browser

You can dock these types of documents in the desktop, undock them from the
desktop so each is in its own separate window, or group undocked documents
together in their tool. You can now position the documents using these
features: tile, left/right split, top/bottom split, floating, or maximized. Use the
Window menu or toolbar icons to position documents.

MATLAB Release Notes
Docking Tools and Documents. There are now dock buttons in the menu bars of
undocked tools and documents. Click a dock button to move the tool into the
desktop, or to move the document into its tool.

Document Bar. There is now a Document Bar in tools that support documents
that you use to go to open documents. It appears when there is more than one
maximized document open in a tool. You can hide or move the Document Bar
by selecting Desktop -> Document Bar menu options.

Saving Layouts. You can save desktop layouts. Select Desktop -> Save Layout
and provide a name. To restore a saved layout, select Desktop -> Desktop
Layout -> name.

Launch Pad Removed. The Launch Pad tool was removed. Use the Start button
instead.

Adding Your Own Toolbox to Start Button. Add your own toolbox to the Start button.
Select Start -> Desktop Tools -> View Source Files. Click Help in the
resulting dialog box for details.

Finding Files and Content in Files with New Tools
Search for files and directories, as well as for content within files by selecting
Edit -> Find Files from any desktop tool. For details, see “Finding Files and
Content Within Files” in the online documentation.

MATLAB Shortcuts to Easily Run Group of Statements
You can create and run MATLAB shortcuts, where a shortcut is an easy way to
run a group of MATLAB statements. A shortcut is like an M-file script, but
unlike an M-file, a shortcut does not have to be on the MATLAB search path or
in the current directory when you run it.

Create a shortcut by selecting Start -> Shortcuts -> New Shortcut and
completing the dialog box. Run the shortcut from the Start button.

You can also create a shortcut by dragging selected statements to the shortcut
toolbar. This adds the shortcut to the toolbar, from where you can then run it.
For details, see “Shortcuts for MATLAB” in the online documentation.
149

Desktop Tools and Development Environment, MATLAB Version 7 (R14)

150
MATLAB Web Browser Added
MATLAB now displays HTML documents it produces in a new desktop tool, the
MATLAB Web browser. You can display HTML documents in this Web browser
using the web function.

The web function now opens the MATLAB Web browser by default, instead of
opening the MATLAB Help browser. Use the web function’s -helpbrowser
option to display files in the Help browser.

Menu Changes

Debug Menu Added. You can now access debugging features from the Debug
menu of most desktop tools.

View, Window, and Desktop Menus. There is no longer a desktop View menu,
although some tools still have a View menu.The Window menu in the desktop
has changed. Use the new Desktop menu to select a layout, and to open and
close tools. Use the Window menu to access open tools and documents, as well
as to position documents. The menus and the menu items in the desktop
change, depending on the current tool selected.

Web Menu Items Moved. The Web menu was removed. Access the items it
contained from Help -> Web Resources.

Keyboard Shortcuts Added to Go to Tools and Documents
There is now a keyboard shortcut you can use to go to each tool and to each open
document. For example, use Ctrl+0 to go to the Command Window, and
Ctrl+Shift+0 to go to the most recently used Editor document. See the Window
menu for the shortcuts to go to currently open tools and documents.

There have been some changes to the keyboard shortcuts you use with desktop
tools. For example, Ctrl+Tab now moves you to the next open tool or group of
tools tabbed together. In previous releases, Ctrl+Tab moved you to the next
open document or tool. In MATLAB 7, use Ctrl+Page Down to move to the next
open document or tool in a tabbed group. For the complete list, see “Keyboard
Shortcuts” in the online documentation.

MATLAB Release Notes
Drag and Drop Supported Between Desktop Tools
You can drag selected text or files between desktop tools. For example, you can

• Select text in the Editor and drag it to the Command Window, which cuts
and pastes it into the Command Window. You can use Ctrl while dragging
to copy selected text instead of just moving it.

• Select a file in the Current Directory browser and drag it to the Editor,
which opens the file in the Editor.

You can also drag selected text or files between desktop tools and external tools
and applications. For example, you can

• Select a MAT-file from the Microsoft Windows Explorer and drag it to the
Command Window, which loads the data into the MATLAB workspace.

• Select text from a page displayed in a Netscape browser and drag it to a file
in the Editor, which pastes the text into the file in the Editor.

Arranging Columns in Tools
In desktop tools that contain columns, you can drag a column to a new position.
For example, this includes the Current Directory browser, and the Help
browser Index and Search panes. Click a column head to sort by that column.
For some tools, you can click again to reverse the sort order.

When a column is too narrow to show all the information in it, position the
cursor over a long item in that column, and a tooltip displays showing the
complete content of the item.

Font and Color Preferences for Tools
Access font and color preferences for all desktop tools in the Fonts and Colors
preference panes. Select File -> Preferences -> Fonts or
File -> Preferences -> Colors. For more information, click the Help button in
the preferences dialog box, or see Fonts, Colors, and Other Preferences in the
online documentation.

terminal Function Removed
The terminal function was removed.

Compatibility Considerations. If your code refers to the terminal function, you need
to change it.
151

Desktop Tools and Development Environment, MATLAB Version 7 (R14)

152
license Function Results Modified Slightly
The data returned by the license command is now sorted in alphabetical order
and uses only lowercase characters.

Compatibility Considerations. If you rely on the data returned by license, be sure
your code works properly with these changes.

Running Functions—Command Window and
Command History
New features and changes introduced in this version are

• Demo of Command Window Features

• Tab Completion Graphical Interface Added; Removed Preference to Limit
Completions

• Navigate in Command Window Using Arrow Keys Via New Preference

• Incremental Search Indicates Search Direction and is Now Case Sensitive

• commandwindow Function Added to Open or Select the Command Window

• Macintosh: Command +. Now Stops Execution

• Comment After Ellipsis Now Properly Highlighted

• Evaluate Selection from Context Menus No Longer Appends

• Syntax Highlighting Default Colors Modified

• Ctrl+C to Stop Execution is Now More Consistent

• Parentheses Matching Support Removed

• Command History Features

Demo of Command Window Features
If you are using the Help browser, watch the new Desktop and Command
Window video demo for an overview of the major functionality.

Tab Completion Graphical Interface Added; Removed Preference to Limit
Completions
Tab completion now has a graphical interface. For example, type cos and press
the Tab key. A list of functions that begin with cos appears. Double-click the
function you want and MATLAB completes the name in the Command
Window. Alternatively, when the list of names appears, you can type the next

MATLAB Release Notes
unique letter in the name, and the first name in the list that matches it is
selected. Continue typing unique letters to select the name you want, and press
Enter. Press Escape to clear the list without selecting a name.

With the new interface, there is a no longer a preference allowing you to limit
the number of tab completions that display. MATLAB always displays all
possible completion.

Compatibility Considerations. If you relied on the preference to limit the number of
tab completions MATLAB displays, type more characters before pressing Tab
so fewer possible completions display.

Navigate in Command Window Using Arrow Keys Via New Preference
There is a new preference that allows you to use arrow keys to navigate in the
Command Window instead of recalling history.

Incremental Search Indicates Search Direction and is Now Case Sensitive
The incremental search interface now indicates the search direction. It is also
case-sensitive when you enter uppercase letters in the search field.

commandwindow Function Added to Open or Select the Command
Window
Use the new commandwindow function to open the Command Window when it is
closed. For example, use this function in an M-file. Or if the Command Window
is already open, use the function to select the Command Window, making it the
active window.

Macintosh: Command +. Now Stops Execution
On Macintosh platforms, you can now use Command+. (Command key and
period key) to stop execution of a running program.

Comment After Ellipsis Now Properly Highlighted
When you include an ellipsis in a statement so that you can continue the
statement on the next line, any text you type after the ... on the same line is
considered to be a MATLAB comment and now is syntax highlighted as a
comment. In previous releases, the syntax highlighting did not indicate the
text after the ... as a comment.
153

Desktop Tools and Development Environment, MATLAB Version 7 (R14)

154
Evaluate Selection from Context Menus No Longer Appends
Evaluate selection, available from context menus for various tools, no longer
appends the selection to the statement at the prompt, but instead runs the
selection. Make a selection and press Enter or Return to append the selection
to the statement at the prompt and execute it.

Syntax Highlighting Default Colors Modified
The default colors for syntax highlighting have been modified. Unterminated
strings are now maroon, while terminated strings are now purple. This is the
opposite of previous versions. Maroon is considered to be more of an “alerting”
color, resembling the default of red for errors, which is the reason for the
change. If you prefer the colors used in previous versions, change them using
preferences—see Syntax Highlighting Colors in the online documentation.

In addition, arguments in statements entered using command syntax rather
than function syntax are highlighted as strings, emphasizing that variables in
command syntax are passed as literal strings rather than as their values.

Ctrl+C to Stop Execution is Now More Consistent
Stopping execution using Ctrl+C (^C) has changed. Windows and UNIX
platforms now respond similarly to Ctrl+C, and in general, stop execution
without the need for pause or drawnow statements in your M-files. For M-files
that run for a long time, or that call built-ins or MEX-files that take a long time,
Ctrl+C does not always effectively stop execution. In that event, include a
drawnow command in your M-file, for example, within a large loop. Ctrl+C
might be less responsive if you started MATLAB with the -nodesktop option.

Parentheses Matching Support Removed
Matching parentheses in the Command Window is not supported in this
version.

Compatibility Considerations. This feature was available in the Command Window
in previous versions but you cannot use it in this version.

Command History Features

Demo of Command History Features. If you are using the Help browser, watch the
new Command history video demo for an overview of the major functionality.

MATLAB Release Notes
Syntax Highlighting in Command History. Entries in the Command History tool now
appear with syntax highlighting.

Tree View in Command History. Entries in the Command History now appear in a
tree view so you can minimize the length of the visible history. The top level
nodes of the tree are the dates/times for each session, and beneath that is the
history for that session. Click the - to the left of a date/time to hide the history
entries for that session. Click the + to the left of a date/time entry to show
history entries for that session.

commandhistory Function Added to Go to Tool. Use the new commandhistory
function to open the Command History when it is closed, and to select it when
it is open.

Save Frequency Higher by Default. The default for saving the history has changed.
Now, by default, MATLAB saves the history file after five statements have
been added to the history. You can modify the frequency using Command
History preferences.

Help
New features and changes introduced in this version are:

• Demo of New Help Browser Features

• Documentation Now Automatically Installed; Not Accessible from CD-ROMs
and docroot Not Supported

• Index Pane Adds Alphabetical Links

• Search Type Removed

• Favorites in Help Browser

• Display Pane Find in Page Icon

• Title Field No Longer Supports Web Browsing

• docsearch Function Added to Execute Help Browser Search

• help Function Provides Help for Methods and Classes

• web Function Now Opens MATLAB Web Browser By Default

• HTML Documentation Not Viewable with -nojvm Startup Option
155

Desktop Tools and Development Environment, MATLAB Version 7 (R14)

156
Demo of New Help Browser Features
If you are using the Help browser, watch the new Help and Documentation
video demo for an overview of the major functionality.

Documentation Now Automatically Installed; Not Accessible from
CD-ROMs and docroot Not Supported
Documentation is automatically installed for all the products you install.
Documentation is no longer accessible from CD-ROMs. To access the
documentation for products not installed on your system, use The MathWorks
Web site,
http://www.mathworks.com/access/helpdesk/help/helpdesk.shtml.

Compatibility Considerations. Because of this change, the docroot function is no
longer needed and will not be supported.

Index Pane Adds Alphabetical Links
The Index pane now has an alphabetical quick index, so you can choose a letter
to see entries starting with that letter. You can still type any index term in the
text box to go directly to that term. Index entries are now shown as links.
Entries that are merely headings do not go to a specific page and do not appear
as links. As is true for all desktop tools, you can now drag columns in the Index
pane to reorder them, or click a column head to sort by that column.

Search Type Removed
In the Search pane, you no longer select the type of search. Results are ordered
so reference pages appear first, followed by headings that include the search
terms. After performing a search, click the link at the bottom of the Search
pane to look for the same term in the technical support database on The
MathWorks Web site. As is true for all desktop tools, you can now drag columns
in the Search pane to reorder them, or click a column head to sort by that
column.

Favorites in Help Browser
Add pages in the Help browser to favorites (also known as bookmarking pages)
by selecting Favorites -> Add to Favorites. The Favorites Editor dialog box
opens. Accept the default entries or modify the Label and click Save. Access
favorites from the Favorites menu or from the Start menu Shortcuts item.

MATLAB Release Notes
Display Pane Find in Page Icon
Click the binoculars icon on the display pane toolbar to search within the page.

Title Field No Longer Supports Web Browsing
The Help browser is now used only for MathWorks documentation installed
with your products.

You can no longer enter a URL in the Title field of the display pane. Instead
run the web function to enter a URL in the Location field. Links from the
documentation to Web pages display the Web pages in the MATLAB Web
browser, not in the Help browser.

docsearch Function Added to Execute Help Browser Search
The new docsearch function allows you to execute a full text search of the Help
browser documentation from the Command Window.

help Function Provides Help for Methods and Classes
The help function now allows you to get help for methods and classes. For
details, see specific instructions in the release notes about using help and doc
for each product, or type help help.

web Function Now Opens MATLAB Web Browser By Default
The web function no longer opens the specified URL in the Help browser by
default, but instead opens the page in the MATLAB Web browser.

Compatibility Considerations. If you want web to open pages in the Help browser,
use the -helpbrowser option.

HTML Documentation Not Viewable with -nojvm Startup Option
If you start MATLAB using the -nojvm option, you cannot view the HTML
documentation files from within MATLAB. The docopt function no longer
supports that option.

Compatibility Considerations. This represents a change from previous versions.
You can view the HTML documentation files at the MathWorks Web site.
157

Desktop Tools and Development Environment, MATLAB Version 7 (R14)

158
Workspace, Search Path, and File Operations
New features and changes introduced in this version are organized by these
topics:

• Workspace Browser Enhancements and Changes

• Array Editor Enhancements and Changes

• Built-In Functions Now Treated Like Other M-Files on Search Path

• savepath Function Added to Replace path2rc

• Search Path Functions—Other Enhancements and Changes

• File Operations

• Current Directory Browser Changes and Enhancements

• Visual Directory and Directory Reports in Current Directory Browser

Workspace Browser Enhancements and Changes

Demo of New Workspace Browser Features. If you are using the Help browser,
watch the new Workspace Browser video demo for an overview of the major
functionality.

Value Column Added to Workspace Browser. The Workspace browser now includes a
Value column where you can see the content of the variable, or a description of
the content. Click the value in the Value column to edit the content.

Rename or Duplicate Variable in Workspace Browser. Click a variable name (in the
Name column) to rename the variable. To create a copy of a variable, right-click
and select Duplicate from the context menu.

Plotting Selected Variables from Workspace Browser. Click the plot icon in the
Workspace browser toolbar to plot the selected variable. Choose from other
applicable plots by clicking the arrow next to the plot button. The function used
to create the plot appears in the Command Window so you can use it again
later.

Print from Workspace Browser. Click the print button in the Workspace browser
toolbar to print a view of the current workspace.

MAT-Files Compressed by Default. MAT-files are now compressed by default. For
details on compressing MAT-files, see the Programming release notes.

MATLAB Release Notes
genvarname Function Added to Construct MATLAB Variable Name. Use the new
function genvarname to construct a valid MATLAB variable name from a given
candidate, where the candidate can be a string or a cell array of strings. For
details, type help genvarname.

datatipinfo Function Added to Display Information About Variable. The new function
datatipinfo(x) displays information about the variable, x.

Array Editor Enhancements and Changes

Demo of New Array Editor Features. If you are using the Help browser, watch the
new Array Editor video demo for an overview of the major functionality.

Cell Arrays and Structures Now Supported. You can now view and edit the content of
cell arrays and structures in the Array Editor. For example, double-click a
structure in the Workspace browser to open it in the Array Editor. In the Array
Editor, double-click an element of the structure to open it as its own Array
Editor document. You can then view and edit the contents.

Plotting Multiple Elements. You can select contiguous elements in an array, and
then click the plot button on the Array Editor toolbar to plot only the
selected elements. Click the arrow next to the plot button in the toolbar to
select from other applicable plots.

Print from Array Editor. You can print an array from the Array Editor. Select File
-> Print to create a print of the current variable.

Larger Arrays Supported. You can open arrays having up to 2^19 (524288)
elements, which is eight times more than the previous limit, 2^16 (65536).

Save to MAT-File. You can save a variable to a MAT-file from the Array Editor.
Select File -> Save and complete the resulting Save dialog box.

Built-In Functions Now Treated Like Other M-Files on Search Path
MATLAB now considers built-in files to be the same as other M-files on the
search path.

Compatibility Considerations. MATLAB no longer considers built-in functions
differently from any other M-files on the search path. MATLAB now looks for
a given name first as a variable, then as an M-file in the current directory, and
159

Desktop Tools and Development Environment, MATLAB Version 7 (R14)

160
finally as an M-file on the search path. Previously MATLAB looked for a given
name as a built-in function after looking for it as a variable.

If you have a function name that is the same as a MATLAB built-in function,
your function might run instead of the built-in function, whereas in previous
releases the built-in function would have run. For the built-in function to run,
remove or rename your function, or change the directory order in the search
path.

savepath Function Added to Replace path2rc
There is a new function, savepath, that saves the current search path to a file,
pathdef.m, so that you can use the same search path in future sessions. Note
that this function replaces path2rc.

Compatibility Considerations. The path2rc function has been replaced by a new
function, savepath. If you use path2rc, it will run savepath instead. The new
function, savepath, performs the same actions as path2rc did, but uses a more
intuitive name. In addition, savepath is case-sensitive on PC platforms,
whereas path2rc was not. Use savepath instead of path2rc, and replace
existing instances of path2rc with savepath.

Search Path Functions—Other Enhancements and Changes

restoredefaultpath Function Added for Recover from Problems. There is a new function,
restoredefaultpath, that helps redefine the search path file, pathdef.m, to
include only files installed with MathWorks products. Use this function to
recover from problems with the path. If that fails, run

restoredefaultpath; matlabrc

genpath Function Now Includes Empty Directories. The genpath function now includes
empty directories in the generated path string.

which Function Now Shows Built-In Functions. The which function now displays the
pathname for built-in functions, as well as for overloaded functions when only
the overloaded functions are available

File Operations

Finding Files and Content Within Files. From any desktop tool, select Edit -> Find
Files. Complete the resulting dialog box to find specified files or files

MATLAB Release Notes
containing specified text in the directories you choose. Double-click a file in the
results listing to open it. For details, see “Finding Files and Content Within
Files” in the online documentation.

Preventing Accidental File Deletion. Use the new recycle function or the General
preference for the delete function to send files you remove using the delete
function to the Recycle Bin on Windows, to the Trash Can on Macintosh, or to
a /tmp/MATLAB_Files_timestamp directory on UNIX systems. You can then
recover any accidentally deleted files from these locations.
161

Desktop Tools and Development Environment, MATLAB Version 7 (R14)

162
Current Directory Browser Changes and Enhancements

Demo of New Current Directory Browser Features. If you are using the Help browser,
watch the new Current Directory Browser video demo for an overview of the
major functionality.

Source Control Interface Features Accessible from Current Directory Browser. You can
access source control system features from the Current Directory browser.
Right-click a file or directory, and from the context menu, select Source
Control and then select the source control function you want to use.

Open File Using External Application. To open a file using an external application,
select Open Outside MATLAB from the context menu. For example, if you
select myfile.doc, Open Outside MATLAB opens myfile.doc in Microsoft
Word, assuming you have the .doc file association configured to launch Word.

Copy and Paste Directories. Using the Current Directory browser, you can now
copy and paste directories, including the entries contents.

Drag to Reorder Columns. As is true for all desktop tools, you can drag columns in
the Current Directory browser to reorder them, or click a column head to sort
by that column. For an item that does not fit in its column, you can hover over
it to see the full name of the item.

Current Directory Text Field Does Not Display When Current Directory Browser is Docked.
The current directory field appears in the Current Directory browser only when
the Current Directory browser is undocked from the MATLAB desktop. When
the Current Directory browser is docked in the MATLAB desktop, use the
current directory text field in the desktop toolbar.

Visual Directory and Directory Reports in Current Directory Browser
There are new tools accessible from the Current Directory browser for tuning
and managing M-files. For details, see Visual Directory Tool in the Current
Directory Browser and Directory Reports in the Current Directory Browser.

MATLAB Release Notes
Editing and Debugging M-Files
New features and changes introduced in this version are

• Demo of New Editor Features

• Opening, Arranging, and Closing Documents

• Visual Changes

• Entering Statements

• Create Block Comments Using %{ and %}

• Finding and Replacing Text

• Printing M-Files

• Breakpoints and Debugging

• Debugging Functions Enhanced

• dbstack Function Supports Nested Functions

• dbstatus Function Supports Conditional Breakpoints

• Access Tools from Editor/Debugger

• Rapid Code Iteration Using Cells

• Preferences for the Editor/Debugger

Demo of New Editor Features
If you are using the Help browser, view the Editor new features video demo to
see highlights of the major new features.

Opening, Arranging, and Closing Documents

Drag File into Editor. You can drag a file onto the Editor to open it. For example,
drag a text file from Windows Explorer onto the Editor.

Automatically Remove Autosave Files—Preference Added. There is now an
Editor/Debugger preference you can set to automatically remove autosave files
when you close the source file. Select Preferences -> Editor/Debugger ->
Autosave, and under Close options, select the Automatically delete
autosave files check box.

Toggle Between Command Window and Editor/Debugger. To move from an Editor
document to the Command Window, press Ctrl+0. To move back to the Editor
document, press Ctrl+Shift+0.
163

Desktop Tools and Development Environment, MATLAB Version 7 (R14)

164
Editor Remains Open with No Files Open. When you close the last open document in
the Editor, the Editor remains open.

Automatic Reloading of Files When Changes Made Outside of MATLAB. When a file is
open in the Editor and you open that same file outside of MATLAB and make
changes to it, the Editor automatically updates the file to includes the changes
you made outside the Editor. This only applies if you did not make any changes
to the file in the Editor. If you want to be prompted before the Editor updates
the file, clear the Editor/Debugger preference for automatically reloading files.

Open Files While Debugging Preference Moved to Debug Menu. In the previous
version, you used a preference to automatically open files when debugging.
Now, instead of using a preference, you select Open M-Files When Debugging
from the Debug menu in any desktop tool.

With this item selected, when you run an M-file containing breakpoints, the
the file opens in the Editor/Debugger when MATLAB encounters a breakpoint.

Visual Changes

Syntax Highlighting for Other Languages. The Editor now supports syntax
highlighting for other languages, specifically C/C++, Java, and HTML. Use
Editor language preferences to change the colors for the syntax highlighting.

Datatips Now Off By Default in Edit Mode. In edit mode, datatips are now off by
default. Select the preference to display them in edit mode. Datatips display
until you move the cursor. Datatips are always on in debug mode.

Vertical Line in Files. There is now a faint line at column 75, which serves as a
useful reminder of where text would be cut off when printing the document.
Remove the line or change the column at which the line appears using
Editor/Debugger Display preferences.

Balance Delimiters Removed. The feature Text -> Balance Delimiters has been
removed.

Syntax Highlighting Default Colors Modified. The default colors for syntax
highlighting M-files have been modified. Unterminated strings are now
maroon, while terminated strings are now purple. This is the opposite of
previous versions. Maroon is considered to be more of an “alerting” color,
resembling the default of red for errors, which is the reason for the change. If

MATLAB Release Notes
you prefer the colors used in previous versions, change them using
preferences—see “Syntax Highlighting Colors” in the online documentation.

In addition, arguments in statements entered using command syntax rather
than function syntax are highlighted as strings, emphasizing that variables in
command syntax are passed as literal strings rather than as their values.

Entering Statements

Change Case of Selected Text. To change the case of selected text, select the text
and then press:

• Alt+U, U to change all text to upper case

• Press Alt+U, L to change all text to lower case

• Press Alt+U, R to change the case of each letter

Nested Function Indenting Supported. MATLAB now supports nested functions and
the Editor provides preferences regarding how to indent them.

Overwrite Mode Supported. When you press the Insert key, text entry is done in
overwrite mode and the cursor assumes a block shape. Press the Insert key
again to return to insert mode.

Create Block Comments Using %{ and %}
You can create a block comment in an M-file using any text editor, that is, you
can comment out contiguous lines of code. Type %{ on the line before the first
line of the comment and %} following the last line of the comment. The lines in
between are considered to be comments. Do not include any code on the lines
with the block comment symbols. You can also nest block comments. See
“Commenting Using Any Text Editor” for details.

Compatibility Considerations. Because of the new block comment symbols, if you
have any files with lines that consist only of %{ and %}, they might be
misinterpreted as block comment start and end symbols, and might cause
errors in your file.
165

Desktop Tools and Development Environment, MATLAB Version 7 (R14)

166
Finding and Replacing Text

Find Files and Content Within Files. You can find directories, files, and content
within multiple files. Select Edit -> Find Files. For details, see “Finding Files
and Content Within Files” in the online documentation.

Incremental Search Now Indicates Direction and is Case Sensitive. The incremental
search interface has been updated. It now indicates the search direction. It is
also case-sensitive when you enter uppercase letters in the search field.

Printing M-Files
Page setup options differ slightly from previous versions.

Breakpoints and Debugging

Conditional Breakpoints Supported. You can specify conditional breakpoints in an
M-file. MATLAB only stops at the line with the breakpoint if the condition is
met. Conditional breakpoints have a yellow breakpoint icon, which you can
copy and paste to other lines.

Disable (Ignore) Breakpoints. You can disable standard and conditional
breakpoints. MATLAB ignores a disabled breakpoint until you enable it again.
A disabled breakpoint icon has an X through it.

Error Breakpoints Supported. Set error breakpoints for all files by selecting Debug
-> Stop If Errors/Warnings, and then completing the resulting dialog box. You
can specify a message identifier for an error or warning breakpoint so that
MATLAB stops only if it encounters the specified error or warning message.

Debugging Functions Enhanced

Error Support Added to dbstop and dbclear. Enhancements to debugging functions
include dbstop if caught error, dbclear if caught error, and dbclear if
all error. The dbstop if all error option has been grandfathered and will
not be supported in future versions. To specify a message identifier, use dbstop
if error ID, dbstop if caught error ID, dbstop if warning ID, and the
corresponding dbclear options. The dbstatus function has been updated to
reflect the changes to dbstop and dbclear.

MATLAB Release Notes
dbstop Function Supports Nested and Anonymous Functions. The dbstop function has
been updated to support nested and anonymous functions. See the dbstop
reference page for details. You cannot use the Editor/Debugger GUI to set
breakpoints in anonymous functions, but must use the dbstop function
instead. Note that when you save a file in the Editor/Debugger that contains
breakpoints in anonymous functions, those breakpoints are cleared. They are
also cleared when you run an unsaved file from the Editor/Debugger GUI,
because running first saves the file.

Notation for Reporting Path Modified. MATLAB now uses a new notation for
reporting the path of functions, subfunctions, and nested functions. As an
example, A/B>C/D means directory A, file B, (sub)function C within the file B,
and nested function D within C.

dbstack Function Supports Nested Functions
The dbstack function has been updated to supported nested functions. See the
dbstack function reference page for more information.

Compatibility Considerations. If you use dbstack in M-files, you might need to
update your files because of this change. When you run dbstack and return
results to a structure, there are now three fields, whereas in previous versions,
there were only two fields. The fields are:

• file, the file in which the function appears

• name, the function name within the file

• line, the line number in the function

The file field does not contain a complete pathname, as the name field did in
previous versions. To get the complete pathname, use
dbstack('-completenames').

dbstatus Function Supports Conditional Breakpoints
The dbstatus function has been updated to support conditional breakpoints.
See the dbstatus function reference page for more information.

Compatibility Considerations. As a result there have been changes to some of the
fields in the structure returned with s = dbstatus(...). If you use dbstatus
in M-files, you might need to update your files because of this change. For
details on the new format, see the dbstatus reference page.
167

Desktop Tools and Development Environment, MATLAB Version 7 (R14)

168
Access Tools from Editor/Debugger
You can access useful tools for M-files from the Editor/Debugger. From the
Tools menu, select Check Code with M-Lint, Show Dependency Report, or
Open Profiler. For details about these tools, see Tuning and Managing
M-Files.

Rapid Code Iteration Using Cells
In the Editor, cell features allow you to easily make changes to values in a
section of an M-file to readily see the impact of the changes. First, you define
cells in a file, then evaluate a cell or cells, iterate values in the cell, and then
reevaluate the cell(s). Cells also allow you to publish M-file code and results to
popular formats, such as HTML and Microsoft Word. For details, see “Rapid
Code Iteration Using Cells” in the online documentation.

Demo of New Rapid Code Iteration Features. If you are using the Help browser,
watch the new Rapid Code Iteration Using Cells video demo for an overview of
the major functionality.

Compatibility Considerations. Because of the new symbols for cell publishing, if you
have any files with lines that consist only of %%, those lines might be
misinterpreted as the start of a cell. Your files will still run without problems,
but if you publish the M-files, you might need to modify those lines.

Preferences for the Editor/Debugger

Add New Line to End of File Upon Save. There is now a preference that allows you to
add a new line to end of a file upon saving.

Open M-Files When Debugging Preference Moved. The feature that instructs M-files
to open automatically when debugging is no longer in preferences but is now
accessible from the Debug menu in all desktop tools.

MATLAB Release Notes
Tuning and Managing M-Files
Use these tools to fine tune and manage your M-files, and to prepare them for
distribution to other users. New features introduced in this version are
organized by these topics:

• Demo of New Directory Reports Features

• Visual Directory Tool in the Current Directory Browser

• Directory Reports in the Current Directory Browser

• Profiler for Measuring Performance

Demo of New Directory Reports Features
If you are using the Help browser, watch the new Directory Reports video demo
for an overview of the major functionality.

Visual Directory Tool in the Current Directory Browser
The Visual Directory view of the Current Directory provides useful information
about the M-files in a directory. It can help you polish M-files before providing
them to others to use.

Click the Show Visual Directory button on the Current Directory browser
toolbar. The view changes—see the following figure for an example. To return
to the Classic view of the Current Directory browser, click the button again.
169

Desktop Tools and Development Environment, MATLAB Version 7 (R14)

170
Directory Reports in the Current Directory Browser
In the Current Directory browser, select View -> Directory Reports and select
the type of report to run. The report appears as an HTML document in the
MATLAB Web browser. A summary of the reports follows. For more
information, see “Directory Reports in Current Directory Browser” in the
online documentation.

M-Lint Code Check Report. The M-Lint report displays potential errors and
problems, as well as opportunities for improvement in your code. For example,
one common message is that a variable is defined but never used. You can also
produce an M-Lint report for specified files using the mlint function, or run the
M-Lint report from the Editor/Debugger or Profiler.

MATLAB Release Notes
171

Desktop Tools and Development Environment, MATLAB Version 7 (R14)

172
TODO/FIXME Report. The TODO/FIXME report shows M-files that contain text
strings you included as notes to yourself, such as TODO.

Help Report. The Help report presents a summary view of the help component
of your M-files. Use this information to help you identify files of interest or to
help you identify files that lack help information.

Contents Report. The Contents report displays information about the integrity of
the Contents.m file for the directory. A Contents.m file is a file you create that
provides a brief description for relevant M-files in the directory. When you type
help followed by the directory name, such as help mydemos, MATLAB displays
the information in the Contents.m file. Use the Contents report to help you
clean up and maintain your Contents.m file. If there is no Contents.m file, use
the Contents report to create one.

Dependency Report. The Dependency report shows all M-files called by each
M-file, or in other words, shows all children of each M-file. Use this report to
determine all files you need to provide to someone who wants to run an M-file.

File Comparison Report. The File Comparison report identifies the differences
between two files in the current directory. For example, you can easily compare
an autosaved version of a file to the latest version of the file.

Coverage Report. Run the Coverage report after you run the Profile report to
identify what percentage of the file was executed when it was profiled.

Profiler for Measuring Performance

Access Profiler from Desktop or Editor/Debugger. Access the Profiler from the
Desktop menu or the Editor/Debugger Tools menu.

Profiler Summary Report. In the Profiler summary report, click a column name to
sort the report by that column.

Profiler Detail Report. In the Profiler detail report, specify options to show busy
lines (lines where the most time was spent) and to show the file listing (the
M-file code). Other options allow you to run the M-Lint Code Check report,
which provides messages for improving the file, and the Coverage report, which
indicates how much of the file was exercised during profiling. For more
information about these reports, see “Directory Reports in Current Directory
Browser” in the online documentation. After selecting an option in the detail

MATLAB Release Notes
report, click Refresh to update the report. The performance acceleration
information in the detail report has been removed.

Compatibility Considerations. The profile report previously supported in MATLAB
is no longer available. This was the report you generated by running profile
report or profreport. There is a new function, profsave that replaces
profreport. The profsave function saves a static version of the HTML profile
report.

Source Control Changes
In MATLAB 6.5 (R13) and MATLAB 7.0 (R14), only source control systems that
comply with the Microsoft Common Source Control standard are supported. If
there is a compliant source control system installed on your machine, it will be
listed in the Source Control options in the MATLAB Preferences dialog.

There are several vendors who provide and interface into Revision Control
Systems (RCS), Concurrent Versions System (CVS), and other such tools using
Microsoft Source Code Control API. ComponentSoftware provides one such
interface layer.

Compatibility Considerations. This represents a change to how MATLAB
interfaced with source control systems in prior versions.

Publishing Results

Publishing to HTML, XML, LaTeX, Word, and PowerPoint
You can publish M-files to HTML, XML, LaTeX, Word, and PowerPoint
documents. The published documents can include code, formatted comments,
and results, such as graphs in Figure windows. Use cells and cell publishing
features in the Editor/Debugger. For details, see “Publishing to HTML, XML,
LaTeX, PowerPoint, and Word Using Cells” in the online documentation.

Demo of New Publishing Features. If you are using the Help browser, watch the
new Publishing M Code from the Editor video demo for an overview of the
major functionality.

Notebook
If you currently use Notebook, consider using cell publishing from the Editor
instead, which provides more features and flexibility for most applications.
173

Desktop Tools and Development Environment, MATLAB Version 7 (R14)

174
Notebook has been improved with regards to speed and stability, with a few
minor changes in operation. The improvements were available via a
Web-downloadable update to MATLAB version 6.5, and are now part of
MATLAB version 7. For details about the differences, see Solution 36072 on the
MathWorks Web site.

MATLAB Release Notes
Mathematics, MATLAB Version 7 (R14)
This version introduces the following new features and changes:

New and Obsolete Functions
• New Functions

• Obsolete Functions

Nondouble Math
• New Nondouble Mathematics Features

• Nondouble Arithmetic

• New Integer Functions — intmax and intmin

• New Warnings for Integer Arithmetic

• Warning on Concatenating Different Integer Classes

• Integer Data Type Functions Now Round Instead of Truncate

• Changes to Behavior of Concatenation

• Class Input for realmax and realmin

• Class Input for ones, zeros, and eye

• Class and Size Inputs for Inf and NaN

• New Class and Data Inputs for eps

• New Class Inputs for sum

• complex Now Accepts Inputs of Different Data Types

• Bit Functions Now Work on Unsigned Integers

Matrices and Elementary Math
• New Function accumarray for Constructing Arrays with Accumulation

• Enhanced sort Capabilities and Performance

• New Functions for Numerical Data Types

• max and min Now Have Restrictions on Inputs of Different Data Types

• Mathematic Operations on Logical Values
175

Mathematics, MATLAB Version 7 (R14)

176
Linear Algebra
• New Function linsolve for Solving Systems of Linear Equations

• New Output for polyeig

• Enhancements to lscov

• New Form for Generalized Hessian

Nonlinear Methods
• New Function quadv Integrates Complex, Array-Valued Functions

Trigonometry, Geometry
• New Trigonometric Functions For Angles in Degrees

• Matrix, Trigonometric, and Other Math Functions No Longer Accept Inputs
of Type char

• New Warnings for Complex Inputs to atan2, log2, and pow2

• Enhanced Functions for Computational Geometry

• New Support for Interpolation Functions

Differential Equations
• New and Enhanced Functions for Ordinary Differential Equations (ODEs)

FFT
• Enhancements to Discrete Fourier Transform Functions

• FFT Functions Applied to Integer Data Types are Becoming Obsolete

Optimization
• New Output Function for Optimization Functions

Specialized Math
• New Input Argument for Incomplete Gamma Function

MATLAB Release Notes
Other
• Overriding the Default BLAS Library on Intel/Windows Systems

• New Names for Demos expm1, expm2, and expm3

New Functions
This release introduces the following new functions:

Function Description

accumarray Construct array with accumulation

cast Cast variable to different type

expm1 Compute exp(x)-1 accurately for small values of x

intmax Largest value of specified integer type

intmin Smallest value of specified integer type

intwarning Control state of integer warnings

isfloat Determine whether input is floating-point array

isinteger Determine whether input is integer array

linsolve Solve linear system of equations

log1p Compute log(1+x) accurately for small values of x

nthroot Real nth root of real numbers

ode15i Solve fully implicit differential equations, variable order
method

odextend Extend solution of initial value problem for ordinary
differential equation

quadv Vectorized quadrature
177

Mathematics, MATLAB Version 7 (R14)

178
Obsolete Functions
The functions listed in the left column of the following table are obsolete and
will be removed from a future version of MATLAB.

Compatibility Considerations
Use the replacement functions listed in the right column instead.

The following obsolete functions are no longer included in MATLAB:

fmin, fmins, icubic, interp4, interp5, interp6, meshdom, nnls,
saxis

New Nondouble Mathematics Features
MATLAB Version 7.0 supports many arithmetic operations and mathematical
functions on the following nondouble MATLAB data types:

• single

• int8 and uint8

• int16 and uint16

• int32 and uint32

Most of the built-in MATLAB functions that perform mathematical operations
now support inputs of type single. In addition, the arithmetic operators and
the functions sum, diff, colon, and some elementary functions now support
integer data types.

Obsolete Function Replacement Function

colmmd colamd

quad8 quadl

symmmd symamd

MATLAB Release Notes
Note In Version 7.0, MATLAB only supports mathematical operations on
nondouble data types for built-in functions; it does not support these
operations for M-file functions unless otherwise stated in the M-file help.

Nondouble Arithmetic
This section describes how MATLAB performs arithmetic on nondouble data
types.

Single Arithmetic
You can now combine numbers of type single with numbers of type double or
single. MATLAB performs arithmetic as if both inputs had type single and
returns a result of type single. For more information, see “Single-Precision
Floating Point” in the online MATLAB Programming documentation.

Integer Arithmetic
You can now combine numbers of an integer data type with numbers of the
same integer data type or type scalar double. MATLAB performs arithmetic as
if both inputs had type double and then converts the result to the same integer
data type.

MATLAB computes operations on arrays of integer data type using saturating
integer arithmetic. Saturating means that if the result is greater than the
upper bound of the integer data type, MATLAB returns the upper bound.
Similarly, if the result is less than the lower bound of the data type, MATLAB
returns the lower bound. For more information, see “Integers” in the online
MATLAB Programming documentation.

New Integer Functions — intmax and intmin
Two new functions, intmax and intmin, return the largest and smallest
numbers, respectively, for integer data types. For example,

intmax('int8')
ans =

127
179

Mathematics, MATLAB Version 7 (R14)

180
returns the largest number of type int8. See “Largest and Smallest Values for
Integer Data Types” in the online MATLAB documentation for more
information.

New Warnings for Integer Arithmetic
This section describes four new warning messages for integer arithmetic in
Version 7.0. While these warnings are turned off by default, you can turn
them on as a diagnostic tool or to warn of behavior in integer arithmetic that
might not be expected.

To turn all four warning messages on at once, enter

intwarning on

Integer Conversion of Noninteger Values. MATLAB can now return a warning when
it rounds up a number in converting to an integer data type. For example,

int8(2.7)
Warning: Conversion rounded non-integer floating point value to
nearest int8 value.

ans =
3

Integer Conversion of NaN. When MATLAB converts NaN (Not-a-Number) to an
integer data type, the result is 0. MATLAB can now return a warning when this
occurs. For example,

int16(NaN)
Warning: NaN converted to int16(0).

ans =
0

MATLAB Release Notes
Integer Conversion Overflow. MATLAB can now return a warning when you
convert a number to an integer data type and the number is outside the range
of the data type. For example,

int8(300)
Warning: Out of range value converted to intmin('int8') or
intmax('int8').

ans =
127

Integer Arithmetic Overflow. MATLAB can now return a warning when the result
of an operation on integer data types is either NaN or outside the range of that
data type. For example,

int8(100) + int8(100)
Warning: Out of range value or NaN computed in integer arithmetic.

ans =
127

To turn all of these warnings off at once, enter

intwarning off

Warning on Concatenating Different Integer Classes
If you concatenate integer arrays of different integer classes, MATLAB
displays the warning

Concatenation with dominant (left-most) integer class may
overflow other operands on conversion to return class.

The class of the resulting array is the same as the dominant (or left-most) value
in the concatenation:

a = int8([52 37 89; 23 16 47]);
b = int16([74 61 32; 98 73 25]);
181

Mathematics, MATLAB Version 7 (R14)

182
% Combine int8 and int16 (int8 is dominant)
c = [a b];
class(c)
ans =
 int8

% Combine int16 and int8 (int16 is dominant)
c = [b a];
class(c)
ans =
 int16

Integer Data Type Functions Now Round Instead of
Truncate
The following integer data functions now round noninteger inputs instead of
truncating:

int8, uint8, int16, uint16, int32, uint32, int64, uint64

For example, in MATLAB 7.0,

int8(3.7)

returns

ans =
 4

Compatibility Considerations
In previous releases, the same command returned 3. If you have code that
contains these functions, it might return different results in Version 7.0 than
in previous releases, in particular, results that differ by 1 after converting
floating-point inputs to an integer data type.

MATLAB Release Notes
You can turn the following warning on to help diagnose these differences:

warning on MATLAB:intCovertNonIntVal

See New Warnings for Integer Arithmetic for more information about this and
other new warning messages.

Changes to Behavior of Concatenation
When you perform concatenation ([a, b], [a;b], and cat(a,b,dim)) on mixed
integer and other numeric or logical inputs, the left-most integer type among
the inputs is the type of the result. As a result, the other inputs might lose
values when they are converted to the integer data type. In Version 7.0,
MATLAB now returns a warning when you concatenate these mixed data
types.

For example,

[int8(100) uint8(200)]
Warning: Concatenation with dominant (left-most) integer class
may overflow other operands on conversion to return class.
(Type "warning off MATLAB:concatenation:integerInteraction" to
suppress this warning.)

ans =
100 127

class(ans)
ans =

int8

Compatibility Considerations
Concatenating an input of any nondouble numeric data type (single and
integer data type) with type char now returns a result of type char. In previous
releases, the same operation returned a result of the same type as the numeric
data type.
183

Mathematics, MATLAB Version 7 (R14)

184
Class Input for realmax and realmin
You can now call the function realmax with the syntax

realmax('single')

ans =

 3.4028e+038

which returns the largest single-precision number. Similarly,

realmin('single')

returns the smallest single-precision number.

The commands realmax('double') and realmin('double') return the same
results as realmax and realmin, respectively. See “Largest and Smallest
Values for Floating-Point Data Types” in the online MATLAB documentation
for more information.

Class Input for ones, zeros, and eye
You can now call ones or zeros with an input argument specifying the data
type of the output. For example,

ones(m, n, p, ..., 'single')

or

ones([m, n, p, ...], 'single')

returns an m-by-n-by-p-by ... array of type single containing all ones. zeros
uses the same syntax.

You can now call eye with this input argument for two-dimensional arrays. For
example,

eye(m, 'single')

returns an m-by-m identity matrix of type single. The command

eye(m, n, 'int8')

returns an m-by-n array of type int8.

MATLAB Release Notes
Class and Size Inputs for Inf and NaN
The functions Inf and NaN now accept inputs that enable you to create Infs or
NaNs of specified sizes and floating-point data types. As examples,

• Inf('single') or NaN('single') create the single-precision
representations of Inf and NaN, respectively.

• Inf(m,n,p, ...) or NaN(m,n,p,...) create m-by-n-by-p-by-... arrays of
Infs or NaNs, respectively.

See the reference pages for Inf and NaN for more information.

New Class and Data Inputs for eps
You can now call the function eps with the syntax

eps(x)

If x has type double, eps(x) returns the distance from x to the next largest
double-precision floating point number. This is a measure of the accuracy of x
as a double-precision number. eps(1) returns the same value as eps with no
input argument.

You can now replace expressions of the form

if Y < eps * abs(X)

 with

if Y < eps(X)

If x has type single, eps(x) returns the distance from x to the next largest
single-precision floating point number. This is a measure of the accuracy of x
as a single-precision number.

The command

eps('single')
ans =

1.1921e-007

returns the same value as eps(single(1)). The value of eps('single') is the
same as single(2^-23). The command eps('double') returns the same result
as eps.
185

Mathematics, MATLAB Version 7 (R14)

186
See “Accuracy of Floating-Point Data” in the online MATLAB documentation
for more information.

New Class Inputs for sum
The following new input arguments for sum control how the summation is
performed on numeric inputs:

• s = sum(x,'native') and s = sum(x, dim,'native') accumulate in the
native type of its input and the output s has the same data type as x. This is
the default for single and double.

• s = sum(x,'double') and s = sum(x, dim, 'double') accumulate in
double-precision. This is the default for integer data types.

In Version 7.0, sum applied to a vector of type single performs single
accumulation and returns a result of type single. In other words, sum(x) is the
same as sum(x, 'native') if x has type single. This is a change in the
behavior of sum from previous releases. To make sum accumulate in double, as
in previous releases, use the input argument 'double'.

Compatibility Considerations
In Version 7.0, sum applied to a vector of type single performs single
accumulation and returns a result of type single. In previous releases, sum
performed this operation in double accumulation.

To restore the previous behavior, call sum with the syntax

sum(X, 'double')

or

sum(X, dim, 'double')

MATLAB Release Notes
complex Now Accepts Inputs of Different Data
Types
The function complex now accepts inputs of different data types when you use
the syntax

complex(a,b)

according to the following rules:

• If either of a or b has type single, c has type single.

• If either of a or b has an integer data type, the other must have the same
integer data type or type scalar double, and c has the same integer data
type.

Bit Functions Now Work on Unsigned Integers
The following functions now work on unsigned integer inputs:

bitand, bitcmp, bitget, bitor, bitset, bitshift, bitxor

Instead of using flints (integer values stored in floating point) to do your bit
manipulations, consider using unsigned integers, as a more natural
representation of bit strings. Instead of using bitmax, use the intmax function
with the appropriate class name. For example, use intmax('uint32') if you
are working with unsigned 32 bit integers.

In addition, the function bitcmp now accepts the following new syntax for
inputs of type uint8, uint16, and uint32:

bitcmp(A)

bitcmp now uses the data type of A to determine how to take the bitwise
complement.

New Function accumarray for Constructing Arrays
with Accumulation
The new accumarray function enables you to construct an array with
accumulation. The following example uses accumarray to construct a 5-by-5
matrix A from a vector val. The function accumarray adds the entries of val to
A at the indices specified by the matrix ind, which has the same number of rows
187

Mathematics, MATLAB Version 7 (R14)

188
as val. If an index in ind is repeated, the entries of val accumulate at the
corresponding entry of A.

ind = [1 2 5 5;1 2 5 5]';
val = [10.1 10.2 10.3 10.4]';
A = accumarray(ind, val)

A =

 10.1000 0 0 0 0
 0 10.2000 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 20.7000

To get the (5,5) entry of A, accumarray adds the entries of val corresponding
to repeated pair of indices (5,5).

A(5, 5) = 10.3 + 10.4

In general, if ind has ndim columns, A will be an N-dimensional array with ndim
dimensions, whose size is max(ind).

Enhanced sort Capabilities and Performance

Improved Performance
sort performance has been improved for numeric arrays of randomly ordered
data. Although there is some performance improvement for all such numeric
arrays, you should see the greatest improvement for integer arrays and
multidimensional arrays.

Sort Direction
A new argument, mode, lets you specify whether sort returns the sorted array
in ascending or descending order.

MATLAB Release Notes
New Functions for Numerical Data Types
MATLAB 7.0 contains three new functions for detecting and converting data
types:

• cast enables you to cast a variable to a different data type or class

• isfloat enables you to detect floating-point arrays. isfloat(A) returns 1 if
A has type double or single and 0 otherwise. isfloat(A) is the same as
isa(A,'float').

• isinteger enables you to detect integer arrays. isinteger(A) returns 1 if A
has integer data type and 0 otherwise. isinteger(A) is the same as
isa(A,'integer')

max and min Now Have Restrictions on Inputs of
Different Data Types
In MATLAB 7.0, the functions max and min now have the following restrictions
on inputs of different data types:

• If any input has an integer data type, all other inputs must have the same
integer data type or type scalar double.

• If any input is of type single, all other inputs must have type double or
single.

Other combinations of inputs now return an error message. In previous
releases, inputs to max or min could have any combination of data types.

For the allowed mixed-type combinations listed above, max and min now return
results of a different data type than in previous releases:

• If one input has an integer data type, while another has type double, the
result now has the same integer data type. In previous releases, the result
had type double.

• If one input has type single, while another has type double, the result now
has type single. In previous releases, the result had type double.
189

Mathematics, MATLAB Version 7 (R14)

190
You can turn on the following warning messages to diagnose any issues that
might result from this change in behavior:

• warning on MATLAB:max:mixedIntegersScalarDoubleInputs

• warning on MATLAB:max:mixedSingleDoubleInputs

• warning on MATLAB:min:mixedIntegersScalarDoubleInputs

• warning on MATLAB:min:mixedSingleDoubleInputs

Compatibility Considerations
Combinations of inputs other than those listed above now return an error
message. Also, for these allowed mixed-type combinations, max and min now
return results of a different data type than in previous releases:

Mathematic Operations on Logical Values
Most mathematic operations are not supported on logical values.

New Function linsolve for Solving Systems of
Linear Equations
The new linsolve function enables you to solve systems of linear equations of
the form Ax = b more quickly when the matrix of coefficients A has a special
form, such as upper triangular. When you specify one of these special types of
systems, linsolve is faster than mldivide or \ (backslash) because it does not
check whether the matrix actually has the form you specify.

Note If the matrix A does not have the form you specify in opts, linsolve
returns incorrect results because it does not perform error checking. If you are
unsure of the form of A, use mldivide, or \ instead.

MATLAB Release Notes
New Output for polyeig
The function polyeig can now return a vector of condition numbers for the
eigenvalues, when you call it with the syntax

[X,E,S] = polyeig(A0,A1,..,Ap)

At least one of A0 and Ap must be nonsingular. Large condition numbers imply
that the problem is close to one with multiple eigenvalues.

Enhancements to lscov
The command

lscov(A,b,V)

now accepts either a weight vector or a covariance matrix for V. If you enter
lscov(A,b) without a third argument, lscov uses the identity matrix for V.

The command lscov(A, b, V, alg) now enables you to specify the algorithm
used to compute the result when V is a matrix. You can specify alg to be one of
the following:

• 'chol' uses the Cholesky decomposition of V

• 'orth' uses the orthogonal decomposition of V

 The command

[x stdx mse] = lscov(...)

now returns mse, the mean squared estimate (MSE).

The command

[x stdx mse S] = lscov(...)

now returns S, the estimated covariance matrix of x.

In addition, lscov can now accept a design matrix A that is rank deficient and
a covariance matrix, V, that is positive semidefinite.
191

Mathematics, MATLAB Version 7 (R14)

192
New Form for Generalized Hessian
The function hess has a new syntax of the form

[AA,BB,Q,Z] = hess(A,B)

where A and B are square matrices, and returns an upper Hessenberg matrix
AA, an upper triangular matrix BB, and unitary matrices Q and Z such that

Q*A*Z = AA

and

Q*B*Z = BB

New Function quadv Integrates Complex,
Array-Valued Functions
The new function quadv integrates complex, array-valued functions.

New Trigonometric Functions For Angles in Degrees
The following new functions compute trigonometric functions of arguments in
degrees.

Function Purpose

sind Compute the sine of an argument in degrees

cosd Compute the cosine of an argument in degrees

tand Compute the tangent of an argument in degrees

cotd Compute the cotangent of an argument in degrees

secd Compute the secant of an argument in degrees

cscd Compute the cosecant of an argument in degrees

MATLAB Release Notes
The following new functions compute the inverse trigonometric functions are
return the answer in degrees:

Matrix, Trigonometric, and Other Math Functions
No Longer Accept Inputs of Type char
Matrix functions, such as chol, lu, and svd, and trigonometric functions, such
as sin and cos, no longer accept inputs of type char. In previous releases, these
functions simply converted char inputs to double before performing operations
on them.

Compatibility Considerations
To restore the previous behavior of these functions, create an M-file that
converts its input to double before applying the function. For example, to
restore the behavior of sin,

1 Create a directory called @char in a directory on the MATLAB path, for
example, your work directory.

Function Purpose

asind Compute the inverse sine of an argument and return answer in
degrees

acosd Compute the inverse cosine of an argument and return answer
in degrees

atand Compute the inverse tangent of an argument and return answer
in degrees

acotd Compute the inverse cotangent of an argument and return
answer in degrees

asecd Compute the inverse secant of an argument and return answer
in degrees

acscd Compute the inverse cosecant of an argument and return
answer in degrees
193

Mathematics, MATLAB Version 7 (R14)

194
2 Create an M-file with the following commands:

function s = sin(x)
s = sin(double(x));

3 Save the file as sin.m in the directory @char.

New Warnings for Complex Inputs to atan2, log2,
and pow2
The following functions now return a warning for inputs that are not real
numbers:

• atan2(y,x)

• [f,e] = log2(x)

• pow2(f,e)

Enhanced Functions for Computational Geometry
The following functions, which perform geometric computations on a set of
points in N-dimensional space, now provide many new options:

• convhull — Compute convex hulls

• convhulln — Compute N-dimensional convex hulls

• delaunay — Construct Delaunay triangulation

• delaunay3 — Construct 3-dimensional Delaunay tessellations

• delaunayn — Construct N-dimensional Delaunay tessellations

• griddata — Data gridding and surface fitting

• griddata3 — Data gridding and surface fitting for 3-dimensional data

• griddatan — Data gridding and hypersurface fitting (dimensions >= 2)

• voronoi — Construct Voronoi diagrams

• voronoin — Construct N-dimensional Voronoi diagrams

These functions now accept an input cell array options that gives you greater
control over how they perform calculations. These functions use the software
Qhull, created at the National Science and Technology Research Center for
Computation and Visualization of Geometric Structures (the Geometry

MATLAB Release Notes
Center). For more information on the available options, see
http://www.qhull.org/.

New Support for Interpolation Functions
The following interpolation functions now have enhanced features:

• interp1 — The command YI = interp1(X,Y,XI) now accepts a
multidimensional array Y and returns an array of the correct dimensions. If
Y is an array of size [n,m1,m2,...,mk], interp1 performs interpolation for
each m1-by-m2-by-...-mk value in Y. If XI is an array of size [d1,d2,...,dj],
YI has size [d1,d2,...,dj,m1,m2,...,mk].

The command pp = interp1(X,Y,'method','pp') uses the specified
method to generate the piecewise polynomial form (ppform) of Y. See the
reference page for interp1 for information about the available methods.

• interp2, interp3, and interpn — You can now pass in a scalar argument,
ExtrapVal, which these functions return for any values of XI and YI that lie
outside the range of values spanned by X and Y defining the grid. For
example,
ZI = interp2(X,Y,Z,XI,YI,'method',ExtrapVal)

returns the value of ExtrapVal for any values of XI or YI that are outside the
range of values spanned by X and Y.

• ppval now accepts multidimensional arrays returned by the spline function
using the syntax
 YY = ppval(spline(X,Y), XX)

Each entry of YY is obtained by evaluating spline(X,Y) at the corresponding
value of XX.

• spline — The command YY = spline(X,Y,XX) now accepts a
multidimensional array Y and returns an array of the correct dimensions.
Note that YY = spline(X,Y,XX) is the same as
YY = ppval(spline(X,Y), XX).

If spline(X, Y) is scalar-valued, then YY is of the same size as XX. If
spline(X, Y)is [D1,..,Dr]-valued, and XX has size [N1,...,Ns], then YY
has size [D1,...,Dr, N1,...,Ns], where YY(:,...,:, J1,...,Js) is the
value of spline(X, Y) at XX(J1,...,Js). There are two exceptions to this
rule:
195

Mathematics, MATLAB Version 7 (R14)

196
New and Enhanced Functions for Ordinary
Differential Equations (ODEs)
MATLAB 7.0 provides two new functions for solving implicit ODEs and
extending solutions to ODEs, along with several enhancements to existing
ODE-related functions:

• ode15i, which is new in Version 7.0, provides the capability to solve fully
implicit ODE and DAE problems of the form with consistent
initial conditions, i.e., . ode15i provides an interface that is
similar to that of the other MATLAB ODE solvers and is as easy to use. A
supporting function decic helps you calculate consistent initial conditions.
The existing functions odeset and odeget enable you to set integration
properties that affect the problem solution. deval evaluates the numerical
solution obtained with ode15i.

• odextend, which is new in Version 7.0, enables you to extend the solution to
an ODE created by an ODE solver.

• bvp4c can now solve multipoint boundary value problems. To see an example
of how to solve a three-point boundary value problem, enter threebvp. To see
the code for the example, enter edit threebvp. Enter help bvp4c to learn
more about bvp4c.

• deval can now evaluate the derivative of the solution to an ODE as well as
the solution itself. The command
[psxint, spxint] = deval(sol,xint)

returns spxint, the value of the derivative to sol.

Enhancements to Discrete Fourier Transform
Functions
The new function fftw enables you to optimize the speed of the discrete Fourier
transform (DFT) functions fft, ifft, fft2, ifft2, fftn, and ifftn. You can
use fftw to set options for a tuning algorithm that experimentally determines
the fastest algorithm for computing a discrete Fourier transform of a particular
size and dimension at run time.

The functions ifft, ifft2, and ifftn now accept the input argument
'symmetric', which causes these functions to treat the array X as conjugate
symmetric. This option is useful when X is not exactly conjugate symmetric,
merely because of round-off error.

f t y y′, ,() 0=
f t y0 y0

′, ,() 0=

MATLAB Release Notes
FFT Functions Applied to Integer Data Types are
Becoming Obsolete
In previous releases, the following fast Fourier transform (FFT) and related
functions cast integer inputs of type uint8 and uint16 to double, used the
double algorithm, and returned a double result:

• fft

• fftn

• ifft

• ifftn

• conv2

In Version 7.0, these operations return warning messages that recommend
convert the inputs to double before applying the function, for example, by
fft(double(x)).

New Output Function for Optimization Functions
In MATLAB 7.0, you can create an output function for several optimization
functions in MATLAB. The optimization function calls the output function at
each iteration of its algorithm. You can use the output function to obtain
information about the data at each iteration or to stop the algorithm based on
the current values of the data. You can use the output function with the
following optimization functions:

• fminbnd
• fminsearch
• fzero

 See “Output Functions” for an example of how to use the output function.

- N1 is ignored if XX is a row vector, that is, if N1 is 1 and s is 2.

- spline ignores any trailing singleton dimensions of XX.
197

Mathematics, MATLAB Version 7 (R14)

198
New Input Argument for Incomplete Gamma
Function
The incomplete gamma function, gammainc, now accepts the input argument
tail, using the syntax

Y = gammainc(X,A,tail)

tail specifies the tail of the incomplete gamma function when X is
non-negative. The choices are for tail are 'lower' (the default) and 'upper'.
The upper incomplete gamma function is defined as

1 - gammainc(x,a)

Overriding the Default BLAS Library on
Intel/Windows Systems

Note Intel has used aggressive optimization to compile MKL. This
optimization causes NaNs to be treated as zeros in some situations.
Calculations that do not involve NaNs are done correctly. In some calculations
that do involve NaNs, the NaNs will not propagate.

MATLAB uses the Basic Linear Algebra Subroutines (BLAS) libraries to speed
up matrix multiplication and LAPACK-based functions like eig, svd, and \
(mldivide). At start-up, MATLAB selects the BLAS library to use.

For R14, MATLAB still uses the ATLAS BLAS libraries, however, on Windows
systems running on Intel processors, you can switch the BLAS library that
MATLAB uses to the Math Kernel Library (MKL) BLAS, provided by Intel.

If you want to take advantage of the potential performance enhancements
provided by the Intel BLAS, you can set the value of the environment variable
BLAS_VERSION to the name of the MKL library, mkl.dll. MATLAB uses the
BLAS specified by this environment variable, if it exists.

To set the BLAS_VERSION environment variable, follow this procedure:

1 Click the Start button, go to the Settings menu, and select Control Panel.

2 On the Control Panel menu, select System.

MATLAB Release Notes
3 In the System Properties dialog box, click the Advanced tab.

4 On the Advanced panel, click the Environment Variables button.

5 In the Environment Variables dialog box, click the New button in the User
variables section.

6 In the New User Variable dialog box, enter the name of the variable as
BLAS_VERSION and set the value of the variable to the name of the MKL
library: mkl.dll.

Multithreading Disabled in Intel Math Kernel Library (MKL) BLAS
The Intel Math Kernel Library (MKL) is multithreaded in several areas. By
default, this threading capability is disabled. To enable threading in the MKL
library, set the value of the OMP_NUM_THREADS environment variable. Intel
recommends setting the value of the OMP_NUM_THREADS variable to the number
of processors you want to use in your application.

To set the value of this environment variable, follow the instructions outlined
in “Overriding the Default BLAS Library on Intel/Windows Systems” on
page 198.

Before enabling multithreading, read the Intel Math Kernel Library 6.1 for
Windows Technical User Notes that explains certain limitations of this
capability.

New Names for Demos expm1, expm2, and expm3
The demos expm1, expm2, and expm3 have been renamed expmdemo1, expmdemo2,
and expmdemo3, to avoid a name conflict with the new function expm1.

Compatibility Considerations
If you have code that relies on these function names, you will need to change
the names in your code.
199

Mathematics, MATLAB Version 7 (R14)

200

MATLAB Release Notes
Programming, MATLAB Version 7 (R14)

Caution If you have saved data to a MAT-file using MATLAB Release 14
Beta 2, please read “MAT-Files Generated By Release 14 Beta2 Must Be
Reformatted” on page 205.

This version introduces the following new features and changes:

Save and Load
• MATLAB Stores Character Data As Unicode; Making Release 14 MAT-files

Readable in Earlier Versions

• MAT-Files Generated By Release 14 Beta2 Must Be Reformatted

• Unicode-Based Character Classification

• Character Rendering on Linux

• Additional Bytes Reserved in MAT-File Header; Do Not Write To Reserved
Space

• Compressed Data Support in MAT-Files

• Saving Structures with the save Function

Function Dispatching
• Case-Sensitivity in Function and Directory Names; Can Affect Which

Function MATLAB Selects

• Differences Between Built-Ins and M-Functions Removed; Can Affect Which
Function MATLAB Selects

• Warning on Naming Conflict

• Change to How evalin Evaluates Dispatch Context
201

Programming, MATLAB Version 7 (R14)

202
Functions and Scripts
• Summary of New Functions

• New Function Type — Anonymous Functions

• New Function Type — Nested Functions

• Calling Private Functions From Scripts

• New Calling Syntax for Function Handles; Replace eval With New Syntax

• Arrays of Function Handles

• Calling nargin and nargout with Built-In Functions

Changes to Specific Functions
• getfield and setfield Not To Be Deprecated

• isglobal Function To Be Discontinued

• Recycle to Protect Files from Unwanted Deletion

• bin2dec Ignores Space Characters

• dbstop crashes Are Now Resolved

• Bit Functions on Unsigned Integers

• inmem Returns Path Information

Specific Data Types
• New Features for Nondouble Data Types

• Mathematic Operations on Logical Values

• Accessing Cell and Structure Arrays Without deal

MATLAB Release Notes
Characters and Strings
• New Features in Regular Expression Support

• Functions that Use Regular Expressions

• Regular Expressions Accept String Vector; No Longer Support Character
Matrix Input

• Cell Array Support for String Functions

• Additional Class Output From mat2str

• String Properties

• Using strtok on Cell Arrays of Strings

• Colon Operator on char Now Returns a char

Dates and Times
• datestr Returns Date In Localized Format

• Form and Locale for weekday

• Freestyle Date String Format

• Reading Date Values with xlsread; Conversion No Longer Necessary

File I/O
• Comprehensive Function for Reading Text FIles

• New Inputs and Outputs to xlsread

• New Inputs and Syntax for dlmwrite

• Change in Output from xlsfinfo

• Importing Complex Arrays

• Using imread to Import Subsets of TIFF Images

• Getting Information about Multimedia Files

• All-Platform Audio Recording and Playback

• FTP File Operations

• Web Services (SOAP)

• 64-Bit File Handling on MacIntosh
203

Programming, MATLAB Version 7 (R14)

204
Error Handling
• Changes to Error Message Format

• nargchk Has a New Format for Error Messages

• Enabling and Disabling Warning Messages

• Catching Ctrl+C in try-catch Statements

Other Topics
• MATLAB Performance Acceleration

• “Using MATLAB” Documentation Is Now Three Books

MATLAB Stores Character Data As Unicode; Making
Release 14 MAT-files Readable in Earlier Versions
Prior releases of MATLAB represented character data in memory using a
system default character encoding scheme that was padded out to 16-bits. This
was the case both in memory and in MAT-files. If this data needed to be
accessible to multiple users, each user’s system had to use the same character
encoding scheme. For those users whose default encoding scheme differed, the
exchange of character-oriented information was not possible.

In Release 14, this limitation is removed by adopting the Unicode character
encoding scheme in mxArrays and their storage in MAT-files. For more
information regarding Unicode, consult the Unicode Consortium web site at
http://www.unicode.org.

For more information on saving character data using Unicode encoding, see
“Writing Character Data” in the External Interfaces documentation. For
information on the internal formatting of MAT-files, see the “MAT-File
Format” document in the MATLAB documentation available in PDF format

Compatibility Considertions
Release 14 MATLAB writes character and figure data to MAT-files using
Unicode character encoding by default. This is now the default encoding used
by MATLAB when writing to MAT-files with the save and hgsave functions or
with the MAT-file external interface functions.

Unicode encoded MAT-files are not readable by earlier versions of MATLAB.
Thus, if you save data to a MAT-file using MATLAB Release 14, and you intend

MATLAB Release Notes
to load this MAT-file into an earlier release of MATLAB, you must override the
default encoding during the save, as explained in this section.

You can override the default encoding by using the -v6 switch with save and
hgsave:

save filename -v6
hgsave filename -v6

or, when saving with MAT functions, by setting the mode to "wL" on the
matOpen operation:

matOpen(filename, "wL");

MAT-Files Generated By Release 14 Beta2 Must Be
Reformatted
Any MAT-files that you created with Release 14 Beta 2 were written using an
internal format that is no longer supported by MATLAB.

Compatibility Considertions
If you need to import data from these files using any release besides Release 14
Beta 2, you must first regenerate the files as described in this section. You
cannot read these files using other releases of MATLAB 7.0, and attempting to
read them with MATLAB 6.5 or 6.5.1 will corrupt memory.

There are two ways in which you can regenerate your MAT-file:

• If you want to use the MAT-file with earlier versions of MATLAB, regenerate
the file using the local character set for your system. To do this, run
MATLAB R14 prerelease or MATLAB R14 Beta 2, load the MAT-file, and
rewrite the file using the command

save filename -v6

• If you want to use the MAT-file with R14 LCS or later, regenerate the file
using Unicode character encoding. To do this, run MATLAB R14 prerelease,
load the MAT-file, and rewrite it using the following command that uses the
-unicode default.

save filename
205

Programming, MATLAB Version 7 (R14)

206
Caution The final R14 release of MATLAB does not allow you to import a
MAT-file written with Release 14 Beta 2. You will get an error if you attempt
to do this. To use a Beta 2 MAT-file with Release 14, you must first reformat
the file with MATLAB R14 prerelease as described above.

If you no longer have access to Release 14 Beta2 or the R14 prerelease, then
you must regenerate the data and save it again.

Unicode-Based Character Classification
Unicode-based character classification APIs are now provided in MATLAB.
The new character classification functions work with any locale or language
and resolve all locale-specific issues that existed in prior releases.

Character Rendering on Linux
Character data rendering has been improved for Linux operating systems that
are configured with a UTF-8 default character set.

Additional Bytes Reserved in MAT-File Header; Do
Not Write To Reserved Space
In previous releases of MATLAB, the last 4 bytes of the 128-byte MAT-file
header were reserved for use by the MathWorks. In Release 14, the last 12
bytes of this header are reserved. See the PDF file “MAT-File Format” for more
information.

Compatibility Considerations
If you have programs that write to any of the last 12 bytes of the MAT-file
header, or if they rely on the state of the 8 additional header bytes that are
reserved as of this release, you will probably need to change your code. These
bytes are now used by MATLAB. If your code writes to these bytes, MATLAB
is likely to overwrite this data. If your code reads these bytes, they might not
be in the same state as they were in previous releases of MATLAB.

MATLAB Release Notes
Compressed Data Support in MAT-Files
The save function compresses your workspace variables as they are saved to a
MAT-file. When writing a MAT-file that you will need to load using an earlier
version of MATLAB, be sure to use the save -v6 command. When you use the
-v6 switch, MATLAB saves the data without compression and without Unicode
character encoding. This makes the resulting file compatible with MATLAB
Version 6 and earlier.

You can also compress data when using MAT-file interface library functions
(matPut*) to write to a MAT-file by opening the file with the command matOpen
wz. See the section “Data Compression” in the MATLAB Programming
documentation for more information on this feature.

Saving Structures with the save Function
Two new syntaxes for the save function enable you to save individual fields of
a structure to a file. See the function reference for save for more information.

To save all fields of the scalar structure s as individual variables within the file,
myfile.mat, use

save('myfile', '-struct', 's')

To save as individual variables only those structure fields specified (s.f1, s.f2,
...), use

save('myfile', '-struct', 's', 'f1', 'f2', ...)

Case-Sensitivity in Function and Directory Names;
Can Affect Which Function MATLAB Selects
Prior to this release, filenames for MATLAB functions and Simulink® models,
(M, P, MEX, DLL, and MDL files) and also directory names were interpreted
somewhat differently by MATLAB with regards to case sensitivity, depending
upon which platform you were running on. Specifically, earlier versions of
MATLAB handled these names with case sensitivity on UNIX, but without
case sensitivity on Windows.

This release addresses the issue of case sensitivity in an effort to make
MATLAB consistent across all supported platforms. By removing these
differences, we hope to make it easier for MATLAB users to write platform
independent code.
207

Programming, MATLAB Version 7 (R14)

208
Case Sensitivity in MATLAB 6 and Earlier
There are several rules regarding case sensitivity that were already consistent
across all platforms in MATLAB 6, and remain in effect on all platforms in
MATLAB 7. MATLAB interprets each of the following with case sensitivity on
both Windows and UNIX:

• Function names that correspond to MATLAB built-ins

• M-file subfunction names

• The names of functions imported from another language environment, such
as Java or COM

UNIX. On all UNIX platforms, including the new implementation on
MacIntosh, all function, model, and directory names were case sensitive and
required an exact match. This rule remains true for UNIX systems in MATLAB
7.

Windows. On Windows platforms, MATLAB 6 obeys the following rules. These
rules are changing in MATLAB 7:

• Function and model names were not case sensitive.

• Directory names, including MATLAB class directory names (e.g., @MyClass)
and private directory names (e.g., prIVAte) were not case sensitive.

Case Sensitivity in MATLAB 7
MATLAB 7 removes the platform specific behaviors by adopting its UNIX case
sensitivity rules on Windows systems. MATLAB running on Windows now
gives preference to an exact (case sensitive) name match, but falls back to an
inexact (case insensitive) match when no exact match can be found.

Compatibility Considerations
There are four main conditions under which MATLAB 7 interprets directory or
function names differently in regards to case sensitivity:

• “Two Files of the Same Name” on page 209

• “Two Method Files of the Same Name” on page 209

• “One File with an Inexact Match” on page 210

• “Private Directory Names” on page 210

MATLAB Release Notes
In any of these cases, each described below, there is a potential for MATLAB to
select a file other than the one you had intended.

Whenever MATLAB 7 detects a potential naming conflict related to case
sensitivity, it issues a warning. If you get one of these warnings when running
a MATLAB program, you may want to modify the related code to eliminate the
warning, or you may wish to simply disable the warning. To disable this type
of warning, see “Turning Off Warnings Caused by Case Mismatch” on page 211

Two Files of the Same Name. Consider the situation in which there are two or
more directories on the MATLAB path that contain a function or model file of
the same name. The names of these M-files differ only in letter case:

H:\released\myTestFun.m
K:\under_test\mytestfun.m

Of these two directories, H:\released is closer to the beginning of the
MATLAB path and thus has priority over the other:

path = H:\released; K:\under_test; ...

On Windows Platforms —

• In MATLAB 6, executing the function mytestfun invokes
H:\released\myTestFun.m.

• In MATLAB 7, executing the function mytestfun invokes
K:\under_test\mytestfun.m and also displays the following warning:

Function call mytestfun invokes K:\under_test\mytestfun.m
however, function H:\released\myTestFun.m, that differs only in
case, precedes it on the path.

On UNIX Platforms —

MATLAB 7 does the same as on Windows, except that the warning message is
disabled by default.

Two Method Files of the Same Name. In this case, there are two M-files of the same
name that implement methods of a MATLAB base class and one of its
subclasses:

@baseclass/my_method.m
@subclass/My_Method.m
209

Programming, MATLAB Version 7 (R14)

210
On Windows Platforms —

• In MATLAB 6, the command my_method(subclass) invokes
@subclass/My_Method.

• In MATLAB 7, the same command invokes @baseclass/my_method because
it is an exact match.

On UNIX Platforms —

MATLAB 7 does the same as on Windows.

One File with an Inexact Match. Another situation that MATLAB now handles
differently involves just one function or model file that matches the function
being called:

H:\released\myTestFun.m

However, the name of this M-file does not match the called function
(mytestfun) in letter case.

On Windows Platforms —

• In MATLAB 6, calling the function mytestfun invokes
H:\released\myTestFun.m.

• In MATLAB 7, calling the function mytestfun invokes the same M-file but
also displays the following warning:

Function call mytestfun invokes inexact match
H:\released\myTestFun.m.

On UNIX Platforms —

• In MATLAB 6, calling the function mytestfun results in an error.

• In MATLAB 7, calling mytestfun invokes H:\released/myTestFun.m and
generates the following warning:

Function call mytestfun invokes inexact match
H:/released/myTestFun.m.

Private Directory Names. Private functions must reside in a directory named
private that is one level down from the directory of any calling function. As of
this release, the directory name private is case sensitive on Windows as it has
always been on UNIX.

MATLAB Release Notes
On Windows Platforms —

• In MATLAB 6, calling function myprivfun in an environment where only a
subdirectory named \PriVAte contains the M-file myprivfun.m invokes
\PriVAte\myprivfun without displaying a warning.

• MATLAB 7 does the same as MATLAB 6, except that it also displays the
following warning:

Wrong case spelling of 'private' as a directory name in
\released\PriVate\myprivfun.m.

On UNIX Platforms —

• In MATLAB 6, calling function myprivfun in an environment where only a
subdirectory named \PriVAte contains the M-file myprivfun.m results in an
error.

• In MATLAB 7, calling myprivfun in this same environment invokes
/PrivATe/myprivfun and also displays the following warning:

Wrong case spelling of 'private' as a directory name in
/released/PriVate/myprivfun.m.

Turning Off Warnings Caused by Case Mismatch
You can disable most warnings caused by case mismatch with the following
command:

warning off MATLAB:dispatcher:InexactMatch

To disable this warning for all of your MATLAB sessions, add this command to
your startup.m or matlabrc.m file.

If you continue to get case sensitivity warnings after entering this command,
you can disable a wider range of warnings with the following command:

warning off ...
 MATLAB:dispatcher:CaseInsensitiveFunctionPrecedesExactMatch
211

Programming, MATLAB Version 7 (R14)

212
Note This latter warning alerts you when, for case sensitivity reasons,
MATLAB may have selected a different M-file from the one you had intended
to run. It is recommended that you leave this warning enabled.

Differences Between Built-Ins and M-Functions
Removed; Can Affect Which Function MATLAB
Selects
MATLAB implements many of its core functions as built-ins. In previous
releases of MATLAB, there have been several significant differences between
the way MATLAB handles built-in and M-file functions. As of this release,
MATLAB handles both types of functions the same. This change affects the
following:

• “Function Dispatching” on page 212

• “Return Value from the functions Function” on page 213

• “Output from the which Function” on page 213

Function Dispatching
MATLAB now dispatches both built-in and M-file functions according to the
same precedence rules, (see “Function Precedence Order” in the Programming
and Data Types section of the MATLAB documentation). In previous releases,
subfunctions, private functions, and class constructor functions took
precedence over M-functions of the same name, but not over built-ins. In this
release, built-in functions follow the same rules given to M-functions, and thus
are lower in precedence than the three function types named above.

This change addresses a potential problem in that changes to the internal
implementation of MATLAB functions could potentially affect the operation of
your own M-code. For example, if a new version of MATLAB were to change an
internal function from being M-based to being built-in, the function in the new
version would now be subject to different precedence rules. If one of your
M-code modules had a subfunction with the same name as this function (now
obeying the built-in rules), then this subfunction would never be called.

This release resolves this potential conflict by using the same precedence rules
for both M-functions and built-ins.

MATLAB Release Notes
Compatibility Considerations. If any of your programs have subfunctions, private
functions, or class constructor functions that have the same name as a built-in
function that has the same function scope, MATLAB now gives precedence to
the subfunction, private function, or constructor rather than the built-in. If this
is not corrected, you may find instances where your program calls a function
other than the one you had intended. You can avoid such problems by renaming
any functions that may conflict with a MATLAB built-in function.

Return Value from the functions Function
The MATLAB functions function returns information about a function handle
such as the function name, type, and filename. In previous releases, functions
returned the filename for a built-in function as the string

'MATLAB built-in function'

In this release, MATLAB associates each built-in function with a placeholder
file that has a .bi extension (for example, reshape.bi for the built-in reshape
function).

Output from the which Function
The which function now displays the pathname for built-in functions, as well
as for overloaded functions when only the overloaded functions are available.

Warning on Naming Conflict
The following warning was added to identify the case when you first use a
name as a function and later use it as a variable:

Warning: File: D:\Work\MATLAB XL\theworks\my_yprime.m Line: 17
Column: 1 Variable 'getdata' has been previously used as a
function name.
(Type "warning off MATLAB:mir_warning_variable_used_as_function:
to suppress this warning.)

For example, this code generates such a warning:

X = i; % Calls the function i() to get sqrt(-1)
for i = 1:10 % uses i as a variable. This produces the warning.
... end
213

Programming, MATLAB Version 7 (R14)

214
Change to How evalin Evaluates Dispatch Context
In Release 13 and earlier, the evalin function evaluated its input in the
specified workspace, but not the workspace's corresponding dispatching
context. Hence, running the following example used to succeed, calling the
subfunction MySubfun but using the value of x from the base workspace:

function demo
evalin('base', 'MySubfun(x)')

function MySubfun(in)
disp(in)

When you call evalin in Release 14, MATLAB tries to find a function named
MySubfun that is accessible in the base workspace, i.e. at the command prompt.
Since MySubfun is a subfunction and therefore not in scope at the command
prompt, MATLAB errors, reporting that MySubfun is undefined.

Compatibility Considerations
There are two ways to change your existing code to work with this new
behavior. First, if your code only needs to get the value of the subfunction's
inputs from the base workspace (as demo.m does above), and does not care what
context MySubfun is run in, then you can change your code to use evalin only
to get the values of the inputs from the base workspace, like this:

function demo_workaround1
MySubfun(evalin('base', 'x'))

function MySubfun(in)
disp(in)

If, however, it is important that the subfunction itself be run in the context of
the base workspace, you can place a function handle to the subfunction in the
base workspace and then evaluate that:

function demo_workaround2
assignin('base', 'MySubfunHandle', @MySubfun);
evalin('base', 'MySubfunHandle(x)')

function MySubfun(in)
disp(in)

MATLAB Release Notes
You can also substitute 'caller' for 'base' in the workaround code if your
original code uses evalin('caller', ...).

Summary of New Functions
These functions are new in this release.

Function Description

addtodate Modify a particular field of a date number

genvarname Construct valid variable name from string

intmax Return largest possible integer value

intmin Return smallest possible integer value

intwarning Control state of integer warnings

isfloat Detect floating-point arrays

isinteger Detect whether an array has integer data type

isscalar Determine if item is a scalar

isstrprop Determine the content of each element of a string

isvector Determine if item is a vector

mmfileinfo Get information about multimedia file

recycle Set option to move deleted files to recycle folder

restoredefaultpath Restore default search path

strtrim Remove leading and trailing whitespace from
string

textscan Read data from text file, convert and write to cell
array

xlswrite Write matrix to a Microsoft Excel spreadsheet
215

Programming, MATLAB Version 7 (R14)

216
New Function Type — Anonymous Functions
Anonymous functions give you a quick means of creating simple functions
without having to create M-files each time. You can construct an anonymous
function either at the MATLAB command line or from within another function
or script.

Refer to “Anonymous Functions” in the MATLAB Programming
documentation for more complete coverage of this topic. For more information
on anonymous functions, open the M-file anondemo.m in the MATLAB Editor
by typing

edit anondemo

Syntax
The syntax for creating an anonymous function from an expression is

fhandle = @(arglist) expr

where arglist is a comma-separated list of input variables, and expr is any
valid MATLAB expression. The constructor returns a function handle,
fhandle, that is mapped to this new function. Creating a function handle for
an anonymous function gives you a means of invoking the function. It is also
useful when you want to pass your anonymous function in a call to some other
function.

Note Function handles not only provide access to anonymous functions. You
can create a function handle to any MATLAB function. The constructor uses a
different syntax: fhandle = @functionname (e.g., fhandle = @sin). To find
out more about function handles, see “Function Handles” in the MATLAB
Programming documentation.

You can use the function handle for an anonymous function in the same way as
any other MATLAB function handle.

A Simple Example
To create a simple function sqr to calculate the square of a number, use

sqr = @(x) x.^2;

MATLAB Release Notes
To execute the function, type the name of the function handle, followed by any
input arguments enclosed in parentheses:

a = sqr(5)
a =
 25

Since sqr is a function handle, you can pass it to other functions. The code
shown here passes the function handle for anonymous function sqr to the
MATLAB quad function to compute its integral from zero to one:

quad(sqr, 0, 1)
ans =
 0.3333

Arrays of Anonymous Functions
To store multiple anonymous functions in an array, use a cell array. See
“Arrays of Anonymous Functions” in the MATLAB Programming
documentation.

Examples
You can find more examples of how to use anonymous functions in MATLAB
under “Examples of Anonymous Functions”.

New Function Type — Nested Functions
You can now define one or more functions within another function in MATLAB.
These inner functions are said to be nested within the function that contains
them. You can also nest functions within other nested functions.

Refer to “Nested Functions” in the MATLAB Programming documentation for
more complete coverage of this topic. For more information on nested functions,
open the M-file nesteddemo.m in the MATLAB Editor by typing

edit nesteddemo
217

Programming, MATLAB Version 7 (R14)

218
Writing a Nested Function
To write a nested function, simply define one function within the body of
another function in an M-file. Like any M-file function, a nested function
contains any or all of the usual function components. In addition, you must
always terminate a nested function with an end statement:

function x = A(p1, p2)
...
 function y = B(p3)
 ...
 end
...
end

Characteristics of Nested Functions
Two characteristics unique to nested functions are

• A nested function has access to the workspaces of all functions inside of
which it is nested. A variable that has a value assigned to it by the primary
function can be read or overwritten by a function nested at any level within
the primary. Similarly, a variable that is assigned in a nested function can
be read or overwritten by any of the functions containing that function.

• When you construct a function handle for a nested function, the handle not
only stores the information needed to access the nested function; it also
stores the values of all variables shared between the nested function and
those functions that contain it. This means that these variables persist in
memory between calls made by means of the function handle.

Examples
You can find examples of how to use nested functions in MATLAB under
“Examples of Nested Functions”.

Calling Private Functions From Scripts
You can now invoke a private function from a script, provided that the script is
called from another M-file function, and that the private function being called
by the script is within the scope of this M-file function.

MATLAB Release Notes
New Calling Syntax for Function Handles; Replace
eval With New Syntax
You can now call functions by means of their related function handles using
standard calling syntax rather than having to use feval. When calling a
function using its handle, specify the function handle name followed by any
input arguments enclosed in parentheses.

For example, if the handle to a function was stored in variable h, you would call
the function as if the handle h were a function name:

h(arg1, arg2, ...)

For the parabola function shown here, construct a function handle h and call
the parabola function by means of the handle:

function y = parabola(a, b, c, x)
y = a*x.^2 + b*x + c;

parabHandle = @parabola;

parabHandle(1.3, .2, 30, 25)

When calling functions that take no input arguments, you must use empty
parentheses after the function handle:

parabHandle()

Compatibility Considerations
Using feval for the purpose of invoking functions via function handle is no
longer necessary and is, in fact, slower. However, for purposes of backward
compatibility, the use of feval to evaluate function handles is still supported
in this release.

Parenthesis notation on a non-scalar function handle means subscripting, just
as in Release 13, while the same notation on scalar function handles means
function call, as described above. Incompatibility can arise only if you construct
a scalar array of function handles and actually index it, necessarily with an
index of 1.
219

Programming, MATLAB Version 7 (R14)

220
Arrays of Function Handles
Previous releases of MATLAB supported arrays of function handles. You
created such an array using the [] operator, and indexed into the array with
the () operator:

x = [@sin @cos @tan];
plot(feval(x(2), -pi:.01:pi));

In Release 14, MATLAB supports arrays of functions handles using cell arrays.
You create and index into a function handle array using the {} operator:

x = {@sin @cos @tan};
plot(x{2}(-pi:.01:pi));

Compatibility Considerations
For purposes of backward compatibility, standard arrays of function handles
are still supported in this release.

Calling nargin and nargout with Built-In Functions
When you pass the name of a function to nargin or nargout, MATLAB returns
the number of declared inputs or outputs for that function. For example,
passing the function name 'normest' to nargin returns 2, (the number of
inputs declared in normest.m:

nargin('normest') % normest is an M-function.
ans =
 2

In this release, you can also use this feature with MATLAB built-in functions.
The following use of nargin returned an error in previous versions of MATLAB
because norm is implemented as a built-in function. In this release, nargin
returns the number of inputs declared by the norm function:

nargin('norm') % norm is a built-in function.
ans =
 2

The same applies to nargout.

MATLAB Release Notes
getfield and setfield Not To Be Deprecated
There are no plans to remove the getfield and setfield functions from the
MATLAB language, as stated in the release notes for MATLAB Release 13.

isglobal Function To Be Discontinued
Support for the isglobal function will be removed in a future release of
MATLAB. In Release 14, invoking isglobal generates the following warning:

Warning: isglobal is obsolete and will be discontinued.
Type "help isglobal" for more details.

Recycle to Protect Files from Unwanted Deletion
To protect yourself from unintentionally deleting any files that you want to
keep, use the new recycle function to turn on file recycling. When file recycling
is on, MATLAB moves all files that you delete with the delete function to either
the recycle bin (on the PC or Macintosh) or a temporary folder (on UNIX).
When file recycling is off, any files you delete are actually removed from the
system.

You can turn recycling on for all of your MATLAB sessions using the
Preferences dialog box (Select File -> Preferences -> General). Under the
heading Default behavior of the delete function, select Move files to the
Recycle Bin.

bin2dec Ignores Space Characters
The bin2dec function now ignores any space (' ') characters in the input string.
Thus, the binary string '010 111' now yields the same result as the string
'010111'.

In Release 13, bin2dec interpreted space characters as zeros:

bin2dec('010 111')
ans =
 39

In this release, bin2dec ignores all space characters:

bin2dec('010 111')
ans =
 23
221

Programming, MATLAB Version 7 (R14)

222
dbstop crashes Are Now Resolved
In previous versions, a MATLAB session would terminate prematurely when
attempting to execute certain P-code files if you had set a debugger breakpoint
in the function represented by that file. For example, an attempt to run Guide
would terminate your MATLAB session if you had used the dbstop function to
set a breakpoint in the corresponding M-file:

dbstop in guide
guide

This bug has been fixed in this release enabling you to debug these files
successfully.

Bit Functions on Unsigned Integers
MATLAB bit functions now work on unsigned integers. Instead of using flints
(integer values stored in floating point) to do you bit manipulations, consider
using unsigned integers. See “Bit Functions Now Work on Unsigned Integers”
in the MATLAB Mathematics release notes.

inmem Returns Path Information
The inmem function now returns not only the names of the currently loaded M-
and MEX-files, but the path and filename extension for each as well. Use the
-completenames option to obtain this additional information:

inmem('-completenames')

New Features for Nondouble Data Types
The section New Nondouble Mathematics Features describes new features
affecting the nondouble (single and integer) data types. These changes affect
single and integer arithmetic operations, and also conversion of single and
double data types to integers.

Mathematic Operations on Logical Values
Most mathematic operations are not supported on logical values.

MATLAB Release Notes
Accessing Cell and Structure Arrays Without deal
In many instances, you can access the data in cell arrays and structure fields
without using the deal function. Here is an example that reads each of the cells
of a cell array into a separate output:

C = {rand(3) ones(3,1) eye(3) zeros(3,1)};

Use either of the following to access the cells in C:

[a,b,c,d] = deal(C{:})
[a,b,c,d] = C{:}

Here is an example that reads each of the fields of a structure array into a
separate output:

A.name = 'Pat'; A.number = 176554;
A(2).name = 'Tony'; A(2).number = 901325;

Use either of the following to access the name field:

[name1,name2] = deal(A(:).name)
[name1,name2] = A(:).name
223

Programming, MATLAB Version 7 (R14)

224
New Features in Regular Expression Support
This version of MATLAB introduces the following new features in regular
expression support:

• Multiple Input Strings — You can use any of the MATLAB regular
expression functions with cell arrays of strings as well as with single strings.
Any or all of the input parameters (the string, expression, or replacement
string) can be a cell array of strings.

• Selective Outputs — To select what type of data you want the regexp and
regexpi to return (string indices or text, token indices or text, or token data
by name) use one or more of the six qualifiers for these functions.

• Lookaround Operators — Lookahead and lookbehind operators enable you to
match a pattern only if it is preceded, or followed, by another pattern.

• New Logical Operators — New operators for grouping, inserting comments,
and finding alternative match patterns

• New Quantifiers — Lazy quantifiers match a minimum number of
characters in a string. Possessive quantifiers do not reevaluate parts of the
string that have already been evaluated

• Element Grouping — Group elements together using either (...) to group
and capture, or (?:...) for grouping alone

• Named Capture Grouping — Capture characters in a token and assign a
name to the token

• Conditional Expressions — Process a string in different ways depending on
a stated condition

• New character representations — New symbolic representations such as \e
for escape, or \xN for a character of hexadecimal value N, are available in this
release.

• Default Tokenizing — The regexprep function now tokenizes by default.
There is no longer a 'tokenize' option

Refer to “Regular Expressions” in the MATLAB Programming documentation.

Functions that Use Regular Expressions
The who, whos, save, load, and clear functions now accept regular expressions
as input. This feature enables you to be more selective concerning which
variables they operate on.

MATLAB Release Notes
For example, this statement saves to a MAT-file only those variables with a
name that either starts with the letters A or B, or contains ten or more
characters:

save('mydata.mat', '-regexp', '^[AB].', '.{10,}');

If the workspace contains the following four variables, two of the four meet the
requirements of the regular expression:

whos
 Name Size Bytes Class

A_stats 10x5 400 double array
X23456789 1x1 12 char array
ab 3x1 536 struct array
longerVariableName 1x4 8 char array

When you perform the save operation and then check the contents of the
MAT-file, you see that the variables with names that either start with A or
have at least ten characters were saved:

save('mydata.mat', '-regexp', '^[AB].', '.{10,}');

whos -file mydata.mat
 Name Size Bytes Class

A_stats 10x5 400 double array
longerVariableName 1x4 8 char array

Refer to the reference pages for these functions for more information and
examples.

Regular Expressions Accept String Vector; No
Longer Support Character Matrix Input
You can now pass a vector of strings in a cell array to any of the MATLAB
regular expression functions (regexp, regexpi, and regexprep).

Compatibility Considerations
Because this is the preferred method of passing a string vector, MATLAB no
longer supports using character matrices for this purpose.
225

Programming, MATLAB Version 7 (R14)

226
Cell Array Support for String Functions
You can now pass a cell array of strings to the strfind function. MATLAB
searches each string in the cell array for occurrences of the pattern string, and
returns the starting index of each such occurrence.

Additional Class Output From mat2str
The statement str = mat2str(A, 'class') creates a string with the name of
the class of A included. This option ensures that the result of evaluating str
will also contain the class information.

Change the 16-bit integer matrix to a string that includes 'int16'. Next,
evaluate this string and verify that you get the same matrix that you started
with:

x1 = int16([-300 407 213 418 32 -125]);

A = mat2str(x1, 'class')
A =
 int16([-300 407 213 418 32 -125])
x2 = eval(A);

isa(x2, 'int16') && all(x2 == x1)
ans =
 1

MATLAB Release Notes
String Properties
Use the new isstrprop function to see what parts of a string or array of strings
are alphabetic, alphanumeric, numeric digits, hexadecimal digits, lowercase,
uppercase. white-space characters, punctuation characters, contain control
characters, or contain graphic characters.

For example, to test for alphabetic characters in a two-dimensional cell array,
use

A = isstrprop({'abc123def';'456ghi789'}, 'alpha')
A =
 [1x9 logical]
 [1x9 logical]

A{:,:}
ans =
 1 1 1 0 0 0 1 1 1
 0 0 0 1 1 1 0 0 0

Using strtok on Cell Arrays of Strings
You can now use the strtok function on a cell array of strings. When used with
a cell array of strings, strtok returns a token output that is also a cell array of
strings, each containing a token for its corresponding input string.

See the strtok reference page to see an example of how this works.

Colon Operator on char Now Returns a char
Applying the colon operator to inputs of type char now returns a result of type
char. For example,

'a':'g'

ans =

abcdefg

Compatibility Considerations
In previous releases, the same operation returned a result of type double. You
may need to change your code if it relies on type double being returned.
227

Programming, MATLAB Version 7 (R14)

228
datestr Returns Date In Localized Format
The statement str = datestr(..., 'local') returns the date string in a
localized format. See the datestr reference page for more information.

Form and Locale for weekday
The weekday function now takes two new inputs that control the output
format. These arguments enable you to get a full or abbreviated day name, and
a local or US English output.

Freestyle Date String Format
When converting between serial date numbers, date vectors, and date strings
with the datenum, datevec, and datestr functions, you can specify a format for
the date string from the Free-Form Date Format Specifiers table shown on the
datestr reference page.

Reading Date Values with xlsread; Conversion No
Longer Necessary
There are two changes that affect importing date information from Excel with
the xlsread function:

• Date Information Returned as Cell Array of Char

• Conversion of Date Values Is No Longer Necessary

Date Information Returned as Cell Array of Char
Prior to this release, xlsread imported date information from an Excel file and
returned the results as a double. In Release 14, xlsread returns this
information as a cell array containing data of class char. The reason for this is
that MATLAB now imports Excel files using an Excel COM server. Excel
returns dates is as strings, and there is really no indication that what is
returned is a date.

Compatibility Considerations. You will need to change your program code to accept
a cell array of type char instead of an array of double when using xlsread to
import date information from Excel.

MATLAB Release Notes
Conversion of Date Values Is No Longer Necessary
When reading date fields from a Microsoft Excel file using earlier versions of
MATLAB, it was necessary to convert the Excel date values into MATLAB date
values. This was necessary because Excel and MATLAB calculated date values
based on a different reference date. This is explained in the section, “Handling
Excel Date Values” in the function reference for xlsread.

With MATLAB 7.0, you no longer have to do this conversion because xlsread
now imports dates as strings rather than as numerical values.

Compatibility Considerations. If your existing code converts Excel date values to
MATLAB values, you will need to remove this step so that you end up with the
correct results.

Comprehensive Function for Reading Text FIles
The new textscan function reads data from an open text file into a cell array.
MATLAB parses the data into fields and converts it according to conversion
specifiers passed to textscan in the argument list.

The textscan function is similar to textread but differs from textread in the
following ways:

• The textscan function offers better performance than textread, making it a
better choice when reading large files.

• With textscan, you can start reading at any point in the file. Once the file is
open, (textscan requires that you open the file first), you can seek to any
position in the file and begin the textscan at that point. The textread
function requires that you start reading from the beginning of the file.

• Subsequent textscan operations start reading the file at the point where the
last textscan left off. The textread function always begins at the start of the
file, regardless of any prior textread.

• textscan returns a single cell array regardless of how many fields you read.
With textscan, you don’t need to match the number of output arguments to
the number of fields being read as you would with textread.

• textscan offers more choices in how the data being read is converted.

• textscan offers more user-configurable options.
229

Programming, MATLAB Version 7 (R14)

230
New Inputs and Outputs to xlsread
The table below shows new input and output arguments to the xlsread
function. See the function reference for xlsread for more information. With the
exception of the basic input argument, these arguments are supported only on
computer systems capable of starting Excel as a COM server from MATLAB.

New Inputs and Syntax for dlmwrite
The dlmwrite function now has several new input arguments plus an optional
attribute-value format in which to enter these arguments. You can now enter
input arguments to dlmwrite in an attribute-value format. This format enables
you to specify just those arguments that you need and omit any others. This
new syntax for dlmwrite is

dlmwrite('filename', M, attribute1, value1, ...
 attributeN, valueN)

The former syntax for dlmwrite is still supported for arguments that were
available in earlier versions of MATLAB.

New Input
Arguments

Description

-1 Opens the Excel file in an Excel window, enabling you to
interactively select the worksheet to be read and the
range of data to import from the worksheet.

range Reads data from the rectangular region of a worksheet
specified by range.

basic Imports data from the spreadsheet in basic import mode.

New Output
Argument

Description

rawdata Returns unprocessed cell content in a cell array. This
includes both numeric and text data.

MATLAB Release Notes
The table below shows new input arguments to the dlmwrite function. You
must specify these new arguments using the attribute-value format. See the
function reference for dlmwrite for more information.

For example, to export matrix M to file myfile.txt, delimited by the tab
character, and using a precision of six significant digits, type

dlmwrite('myfile.txt', M, 'delimiter', '\t', 'precision', 6)

Change in Output from xlsfinfo
xlsfinfo now returns the names or all worksheets in an Excel file instead of
just the ones with numbers in them (as in Release 13).

Importing Complex Arrays
The csvread, dlmread, and textscan functions import any complex number as
a whole into a complex numeric field, converting the real and imaginary parts
to the specified numeric type. Valid forms for a complex number are

Attribute Value

append Either overwrite or append to the file

delimiter Delimiter string to be used in separating matrix elements

newline Character(s) to use in terminating each line

roffset Offset, in rows, from the top of the destination file to where
matrix data is to be written

coffset Offset, in columns, from the left side of the destination file to
where matrix data is to be written

precision Numeric precision to use in writing data to the file

Form Example

–<real>–<imag>i|j 5.7-3.1i

–<imag>i|j -7j
231

Programming, MATLAB Version 7 (R14)

232
Using imread to Import Subsets of TIFF Images
When using the imread function with the 'PixelRegion' parameter, you can
now read in portions of an image stored in TIFF format. Specify a cell array
containing two vectors, ROWS and COLS, for the value of this parameter. Each
vector can either be a two-element vector specifying the extent of the region,
[START STOP], or a three-element vector that enables downsampling, [START
INCREMENT STOP].

When used with tiled images, 'PixelRegion' subsetting can improve memory
usage and performance because it only reads in the tiles that encompass the
region. For example, in the following figure, if you specify the region defined by
the box, imread would only read in tiles 1, 2, 4, and 5.

Tiled image Tile 2 Tile 3

Tile 4 Tile 5 Tile 6

Tile 7 Tile 8 Tile 9

Region

Tile 10 Tile 11 Tile 12

Tile 1

MATLAB Release Notes
Getting Information about Multimedia Files
MATLAB now includes a function, named mmfileinfo, that returns
information about the contents of a multimedia file. The file can contain audio
data, video data, or both.

This function is only available on Windows platforms.

All-Platform Audio Recording and Playback
The MATLAB audiorecorder and audioplayer functions can now be used on
Windows and UNIX platforms. These functions were previously only available
on Windows systems.

Note The audiorecorder and audioplayer objects are now implemented as
MATLAB objects on all platforms. The methods supported by these objects are
overloaded functions. You must use standard MATLAB function calling syntax
to call methods of these objects; you cannot use dot notation.

FTP File Operations
From within MATLAB, you can connect to an FTP server to perform remote file
operations. For more information, see the ftp reference page.

Web Services (SOAP)
MATLAB can now consume Simple Object Access Protocol-based (SOAP) Web
services with the createClassFromWSDL function. For more information, see
“Using Web Services in MATLAB” in the online documentation.
233

Programming, MATLAB Version 7 (R14)

234
64-Bit File Handling on MacIntosh
The release notes for MATLAB Release 13 should have included MacIntosh in
the list of those platforms that support 64-bit file handling. This support is
available on the following platforms:

• Windows

• Solaris

• Linux 2.4.x

• HP-UX 11.0, 9000/785

• Macintosh

Changes to Error Message Format
The last two lines of MATLAB error messages have changed for Release 14.
Error messages now

• Display functions and subfunctions differently than in R13.

• Display nested functions.

• Call out the error in a string that you can use as input to other functions, like
dbstop.

• Have a hot link to the source of the error.

Each of these changes is discussed below. Examples show the errors generated
by both the previous release (V6.5) and current release (7.0) of MATLAB for the
purpose of comparison.

Display of Functions and Subfunctions
MATLAB now calls out the source of the error using a consistent format. One
of the features of this format is that you can place the string of the message into
other MATLAB commands. See “Using the Error Message String as Input to
Other Functions” on page 236.

MATLAB Release Notes
Errors Generated by the Primary Function. Errors generated by the primary function
of an M-file are displayed as shown below. In version 7.0, the path is not shown
in most cases (private functions are one exception). Filename extension is also
not shown. The failing line number is shown on third line.

In MATLAB V6.5 —

??? Error using ==> strcmp
Too many input arguments.

Error in ==> B:\MATLAB_V70\work\errmsgtest.m
On line 11 ==> strcmp('aa','bb','cc');

In MATLAB V7.0 —

??? Error using ==> strcmp
Too many input arguments.

Error in ==> errmsgtest at 11
strcmp('aa','bb','cc');

Errors Generated by a Subfunction. Errors generated by a subfunction of an M-file
are displayed in the previous release and current release of MATLAB as shown
below. Comments for primary functions apply here as well. Also, the name of
the failing subfunction follows the > character instead of being put in
parentheses.

In MATLAB V6.5 —

??? Error using ==> strcmp
Too many input arguments.

Error in ==> B:\MATLAB_V70\work\errmsgtest.m (subFun1)
On line 17 ==> strcmp('aa','bb','cc');

In MATLAB V7.0 —

??? Error using ==> strcmp
Too many input arguments.

Error in ==> errmsgtest>subFun1 at 17
strcmp('aa','bb','cc');
235

Programming, MATLAB Version 7 (R14)

236
Error Messages Display Nested Functions
This example shows an error that comes from a nested function (nestFun2)
called by another nested function (nestFun1). It uses the following syntax,
where the > character follows the name of the primary function and precedes
the names of any nested functions.

fun>nestfun1/nestfun2/etc at lineno.

In MATLAB V6.5 —

Nested functions are not supported prior to version 7.0.

In MATLAB V7.0 —

??? Error using ==> strcmp
Too many input arguments.

Error in ==> errmsgtest>nestFun1/nestFun2 at 6
strcmp('aa','bb','cc');

Using the Error Message String as Input to Other Functions
You can copy the text of theline that calls out the source of an error and use this
string as input to some of the MATLAB debugging functions. The example
shown below uses the string in a call to the dbstop function.

Copy the text that begins after

Error in ==>

In MATLAB V6.5 —

This feature is not supported prior to version 7.0.

In MATLAB V7.0 —

??? Error using ==> strcmp
Too many input arguments.

Error in ==> errmsgtest>nestFun1/nestFun2 at 6
strcmp('aa','bb','cc');

Copy and paste text of this error message into the dbstop command:

dbstop errmsgtest>nestFun1/nestFun2 at 6

MATLAB Release Notes
Hot Link to the Source of an Error
Error messages now contain a blue-underlined hot link to the failing line of the
M-file being executed.

Compatibility Considerations
If any of your programs rely on specific text in the types of error messages
described here, you may have to modify your program code.

nargchk Has a New Format for Error Messages
When the nargchk function detects an error condition, it returns information
on the error in either a string or a MATLAB structure. Use one of these two
command syntaxes to specify which format to return. If neither is specified,
nargchk returns a string:

msgstring = nargchk(minargs, maxargs, numargs, 'string')
msgstruct = nargchk(minargs, maxargs, numargs, 'struct')

The return structure has two fields: the message string, and a message
identifier. When too few inputs are supplied, these fields are

 message: 'Not enough input arguments.'
 identifier: 'MATLAB:nargchk:notEnoughInputs'

When too many inputs are supplied, the structure fields are

 message: 'Too many input arguments.'
 identifier: 'MATLAB:nargchk:tooManyInputs'
237

Programming, MATLAB Version 7 (R14)

238
Enabling and Disabling Warning Messages
The following message, which MATLAB appended to all warning messages in
the previous release, is no longer displayed.

(Type "warning off <msgid:msgstr>" to suppress this warning.)

Use the off and on options of the warning function to control the display of all
or selected warnings. This example disables a selected warning, and then
enables all warnings:

% All warnings are enabled by default.
A = 5/0;
Warning: Divide by zero.

% Disable the most recent warning
[msgstr msgid] = lastwarn;
warning('off', msgid);

% Try it again. This time there is no warning.
A = 5/0;

% Enable all warnings
warning('on', 'all')

% Verify that the warning is reenabled.
A = 5/0;
Warning: Divide by zero.

Catching Ctrl+C in try-catch Statements
In previous releases of MATLAB, typing Ctrl+C while executing the try part
of a try-catch statement resulted in the program branching to the catch part
of that statement. In this release, typing Ctrl+C is purposely not caught by
try-catch statements.

The reason for this change is that, under certain circumstances, this behavior
in try-catch statements was found to adversely affect internal MATLAB code.
In these cases, this resulted in MATLAB code catching the Ctrl+C rather than
responding appropriately to it by terminating the current operation.

MATLAB Release Notes
MATLAB Performance Acceleration
Release 13 introduced a new performance acceleration feature built into
MATLAB. Enhancing performance in MATLAB is an ongoing development
project that continues to show significant improvements in the performance of
MATLAB programs.

The Performance Acceleration documentation written for Release 13 included
suggestions on specific techniques to make the most of this feature. In this
release, many of those techniques are no longer necessary. This documentation
has been replaced with more general suggestions on how to improve the
performance of your programs.

“Using MATLAB” Documentation Is Now Three
Books
Due to the increasing size of the printed “Using MATLAB” manual, we have
divided it up into three separate printed books in version 7.0 to make it more
manageable. The titles for these books (and their corresponding headings in
the MATLAB Help Browser) are

• Desktop Tools and Development Environment

• Mathematics

• Programming

The online structure of this documentation is very similar to what it has been
in previous releases, although some topics are now covered more thoroughly.
We hope that you find this new format easier to use.
239

Programming, MATLAB Version 7 (R14)

240

MATLAB Release Notes
Graphics and 3-D Visualization, MATLAB Version 7 (R14)
If you are using the Help browser, view the Graphics new features video demo
to see highlights of the new features.

This version introduces the following new features and changes:

• Plotting Tools

• Code Generation

• Data Exploration Tools

• Annotation Features

• Plot Objects

• Group Objects

• Linking Graphics Object Properties

• New Behavior for Hold Command

• Enhancements to findobj

• New Axes Properties

• New Figure Properties

• New Rootobject Property

Plotting Tools
If you are using the Help browser, watch the new Plotting Tools video demo for
an overview of the major functionality.

The following list links to new or redesigned plotting tool features.

• Figure Toolbars — figure toolbars that provide data exploration, plot editing,
and annotation tools

• Interactive Plotting Tools — overview of plotting tools

- Figure Palette

- Plot Browser

- Property Editor
241

Graphics and 3-D Visualization, MATLAB Version 7 (R14)

242
Related functions:

• plottools
• figurepalette
• plotbrowser
• propertyeditor

Code Generation
You can save a graph as an M-file that contains the code to regenerate the
graph. See Generating an M-File to Recreate a Graph for more information.

Data Exploration Tools
The following list links to the documentation for the data exploration tools.

• Data Cursor — displaying data values interactively

• Zooming — 2-D and 3-D zoom tools

• Panning — repositioning you view of the graph

• Rotate 3D — interactive rotation of 3-D views

• Camera Toolbar — mouse-controlled 3-D view manipulation.

MATLAB Release Notes
Annotation Features
The following list links to the documentation for annotation features and
properties of the annotation objects.

• Overview of annotation features

• Rectangles and ellipses

- Rectangle properties

- Ellipse properties

• Textbox annotations

- Textbox properties

• Lines and arrows

- Line properties

- Arrow properties

- Textarrow properties

- Doublearrow properties

• Adding a Colorbar to a graph — new positioning options and colormap
modification.

colorbar — new command options

• Adding a legend to a graph — new positioning and appearance options

legend — new command options

• Pinning — attaching annotation objects to a point in the figure

• Aligning and Distributing graphics objects

See the annotation function for information on programmatic access to
annotation objects.

See Annotation Objects for an overview of this type of graphics object.

Plot Objects
Plot Objects are composite graphics objects that simplify the modification of
graphs that employ them. The following list links to reference pages for
modified graphing functions and to property descriptions of the new plot
objects.

See Plot Objects for an overview of this type of graphics object.
243

Graphics and 3-D Visualization, MATLAB Version 7 (R14)

244
Functions That Use Plot Objects

• area

• bar

• contour

• errorbar

• plot, plot3, loglog, semilogx, semilogy

• quiver, quiver3

• scatter, scatter3

• stairs

• stem, stem3

• surf, and mesh group

Note that all of the above functions have a 'v6' optional argument that causes
each function to return the core graphics objects that were created in previous
releases. See the reference pages for more information.

Plot Objects

• areaseries

• barseries

• contourgroup

• errorbarseries

• lineseries

• quivergroup

• scattergroup

• stairseries

• stemseries

• surfaceplot

Refreshing Data Source Properties
The refreshdata function enables you to take advantage of the XDataSource,
YDataSource, and ZDataSource plot objects properties to update graph data
when workspace variables change values.

See Specifying a Data Source for more information.

MATLAB Release Notes
Group Objects
Group objects enable you treat a number of objects as one, with respect to
certain properties.

See Group Objects for an overview of this type of graphics object.

Group Object Functions

• hggroup
• hgtransform
• makehgtform

Linking Graphics Object Properties
You can link the corresponding properties of graphics objects so that changing
any one object’s properties makes the same change to all the linked objects.

See linkprop and linkaxes for more information.

New Behavior for Hold Command
The hold command has a new option all. This option holds the plot and the
current line color and line style so that subsequent graphing commands do not
reset the ColorOrder or LineStyleOrder property values to the beginning to
the list.

Enhancements to findobj
The findobj function now supports logical operators and regular expressions.
See the findobj reference page for more information.
245

Graphics and 3-D Visualization, MATLAB Version 7 (R14)

246
New Axes Properties
You can control the behavior of an axes within a resized figure using the
following new axes properties.

• OuterPosition — The boundary of the axes including the axis labels, title,
and a margin. For figures with only one axes, this is the interior of the figure.

• ActivePositionProperty — Specifies whether to use the OuterPosition or
the Position property as the size to preserve when resizing the figure
containing the axes.

• TightInset — The margins added to the width and height of the Position
property to include text labels, title, and axis labels.

See Automatic Axes Resize for more information.

New Figure Properties
There are three new figure properties described below.

Figure KeyPressFcn Property
The figure KeyPressFcn property now supports an event structure that returns
information about the key press event. See the KeyPressFcn description for
more information.

DockControls and WindowStyle Properties
Figures now have a DockControls property that determines if the Desktop
menu appears on the figure. Setting dockable to on causes the menu to be
displayed, the default setting of off prevents the menu from being displayed.
You can always dock and undock the figure by setting the figure WindowStyle
property.

Note that, depending on your preference settings, the figure might first be
grouped into a Document window, which can then be docked in the Desktop.

See Docking Figures in the Desktop for more information.

New Rootobject Property
The MonitorPosition property enables you to get the postion (width, height,
and location) of multiple monitors connected to your computer.

MATLAB Release Notes
New Dialog for Exporting Figures
You can export MATLAB figures to a variety of standard file formats using the
Export Setup dialog. To display the dialog, select Export Setup from the figure
File menu.

Export Setup provides easy access to the graphics properties that affect
exported figures. For example, it enables you to control the size of the figure,
the font size and type, whether to use line styles or solid lines, and so on.

You can save your own export setting as an export style, or you can use
predefined options optimized for PowerPoint and MSWord.

The following picture shows the major components of the Export Setup dialog.

Select the category of properties
you want to set.

Save your own export setting or
use predefined styles.

Apply the setting to the figure.Select an export format.
247

Graphics and 3-D Visualization, MATLAB Version 7 (R14)

248
Compatibility Considerations

Plotting Tools Not Working on Macintosh
The plotting tools not supported on the Macintosh platform. This means the
Figure Palette, Plot Browser, and Property Editor do not work these platforms.
To use the MATLAB 6 Property Editor, see the propedit command.

Using -nojvm Option Prevents Plotting Tools Use
If you use the -nojvm option when starting MATLAB, the plotting tools are not
available.

MATLAB 6 Version Property Editor
The MATLAB 6 Property Editor is being replaced by a new Property Editor,
which is available in this release. However, you can still access the MATLAB 6
Property Editor by issuing the following command.

propedit(object_handle,'v6')

Without the v6 argument, propedit displays the new Property Editor. See the
propedit function for more information. Note that the Property Editor might
not work with all objects.

Cannot Dock Figures on Macintosh
You cannot dock figures in the Desktop, because MATLAB uses native figure
windows on the Macintosh platform.

Not All Macintosh System Fonts Are Available
MATLAB figures do not support the same fonts as native Macintosh
applications. Use the uisetfont functions to see which fonts are available in
MATLAB.

MATLAB Release Notes
Creating Graphical User Interfaces (GUIs), MATLAB Version
7 (R14)

This version introduces the following new features and changes:

• New Container Components

• ActiveX Controls

• New Toolbar Component

• Menu Editor Enhancements

• Layout Resize Behavior

• Key Press Detection

• Edit Text Box Scroll Bar

• Setting Uicontrol Focus

• Multiple Selection in uigetfile

• Program Suspension Time-Out

• Standard Dialog Box Push Buttons

• New Syntax for uigetfile and uiputfile

• Frames Not Available in GUIDE Layout Editor

New Container Components
MATLAB 7.0 introduces two new container components,

• Panel — Groups components

• Button group – Groups components and manages exclusive selection
behavior for radio buttons and toggle buttons.

These components are available in the GUIDE Layout Editor and via the
functions uipanel and uibuttongroup.

A container component can be the child of a figure or another container. In
general, containers can have as children the same components as figures,
including other containers. However, they cannot have menu bars, toolbars, or
ActiveX controls as children. The Position property of the child of a panel or
button group is interpreted relative to the panel or button group. If you move
the panel or button group, the components it contains automatically move with
it and maintain their positions.
249

Creating Graphical User Interfaces (GUIs), MATLAB Version 7 (R14)

250
Panel properties and button group properties enable you to control the color,
size, border, and position of the panel or button group, assign a title, and
specify a context menu. In general, panels and button groups have many of the
same properties as uicontrol objects.

For information about working with panels and button groups in GUIDE, see
the following topics in the Creating Graphical User Interfaces collection of the
MATLAB documentation.

Compatibility Considerations
You can export a GUI that contains a panel or button group from GUIDE to a
single M-file that does not require a FIG-file. However, you will not be able to
run that M-file in MATLAB versions earlier than 7.0.

ActiveX Controls
GUIDE now enables you to insert an ActiveX control into your GUI if you are
running MATLAB on Microsoft Windows. When you drag an ActiveX
component from the component palette into the layout area, GUIDE displays a
dialog in which you can select any registered ActiveX control on your system.
When you select an ActiveX control and click Create, the control appears as a
small box in the Layout Editor. You can then program the control to do what
you want it to.

See MATLAB COM Client Support in the online MATLAB documentation and
ActiveX Controls in the GUIDE documentation to learn more about ActiveX
controls.

New Toolbar Component
A new function, uitoolbar, enables you to add a toolbar to a figure. You can
add your own pushtools and toggletools to the toolbar with the uipushtool and
uitoggletool functions.

Uipushtool properties enable you to provide a callback that responds to a
mouse click. Uitoggletool properties enable you to provide callbacks that
respond to the tool being set on, off, or toggled to either position. Properties for
both uipushtools and uitoggletools provide for tooltip strings, separators, and
truecolor images to display on the tools. In general, uitoolbar, uipushtool,
and uitoggletool objects have many of the same properties as uicontrol
objects.

MATLAB Release Notes
Menu Editor Enhancements
The GUIDE Menu Editor now enables you to:

• Choose a keyboard accelerator for a menu item from a pop-up menu.

• Set an item’s Enabled property on or off when the menu is first opened. If
the property value is off, the item appears dimmed and the user cannot
select it.

• Open the Property Inspector where you can change all uimenu properties.

• Display the callback subfunction in an editor. If the callback does not yet
exist, GUIDE creates it before displaying it.

The Menu Editor is now better synchronized with other GUIDE tools:

• Property changes made in the Menu Editor or in the Property Inspector are
immediately reflected in the other.

• uimenu objects in the Menu Editor now also appear in the Object Browser. If
you select a uimenu object in either, it is automatically selected in the other.

• If a component is selected in the Layout Editor and you select a menu item
in the Menu Editor, the component is deselected in the Layout Editor.

See Menu Editor in the MATLAB documentation for more information.

Layout Resize Behavior
In the GUIDE Layout Editor, components you have placed in the layout area
now maintain their visual position relative to the upper left corner of their
parent container (figure, panel, or button group) when you resize the container
in the Layout Editor. However, the values of the Position property are
determined relative to the lower left corner, and these values will change
accordingly when you increase or decrease the height of the container.

Key Press Detection
A new uicontrol callback property, KeyPressFcn, specifies a key press callback
function with which you can detect a key press when the callback’s uicontrol
object has focus. If no uicontrol has focus, the figure’s key press callback
function, if any, is invoked. This property is available in the uicontrol
function and in GUIDE.
251

Creating Graphical User Interfaces (GUIs), MATLAB Version 7 (R14)

252
If you specify the KeyPressFcn property as an M-file, the callback routine can
query the figure's CurrentCharacter property to determine what particular
key was pressed and thereby limit the callback execution to specific keys. If you
specify the KeyPressFcn property as a function handle, the callback routine can
retrieve information about the key that was pressed from its eventdata
structure argument.

As an example, you can use this property to enable a user to press Enter,
rather than the space bar, after giving focus to a uicontrol push button. Use
the push button’s key press callback function to determine if the user pressed
the Enter key. If it was the Enter key, call the push button callback.

See the Uicontrol Properties for more information.

Edit Text Box Scroll Bar
For uicontrol editable text fields, i.e. the Style property is set to 'edit', if
Max-Min>1, then multiple lines are allowed. For multi-line edit boxes, a vertical
scroll bar enables you to scroll the text. You can also use the arrow keys to
scroll.

Setting Uicontrol Focus
The uicontrol function now enables you to transfer focus programmatically to
a specified uicontrol object. The syntax uicontrol(uich) transfers focus to
the uicontrol object with handle uich.

Multiple Selection in uigetfile
The uigetfile function can now create a dialog that enables the user to select
and retrieve multiple files using the Shift and Ctrl keys. You can turn this
capability on or off using the new 'MultiSelect' parameter. The default
setting is off.

Program Suspension Time-Out
A new uiwait argument, timeout, enables you to specify the number of seconds
after which program execution will resume, unless uiresume is called first or
the specified figure is deleted. For example,

uiwait(h,5)

MATLAB Release Notes
causes the suspended program to resume execution, if it has not already, after
five seconds.

Standard Dialog Box Push Buttons
For standard dialog boxes with more than one uicontrol push button, you can
now give focus to another button while retaining the default button. Focus is
denoted by a border or a dotted border, respectively, in UNIX and Microsoft
Windows. The default button has a shadow.

In such a case, if the user presses the space bar, the button with focus gets the
key press and can choose to execute its own callback or the callback of the
default button. If the user presses Enter, the default push button gets the key
press and its callback executes. This code provides an example.

ButtonName=questdlg('What is your wish?', ...
 'Genie Question', ...
 'Food','Clothing','Money','Money')

New Syntax for uigetfile and uiputfile
The uigetfile and uiputfile syntax that enables you to position dialog boxes
that are used to retrieve and save files is changed. The new syntaxes are
uigetfile('FilterSpec','DialogTitle','Location',[x y]) and
uiputfile('FilterSpec','DialogTitle','Location',[x y]). Previously,
the syntaxes were, uigetfile('FilterSpec','DialogTitle',x,y) and
uiputfile('FilterSpec','DialogTitle',x,y)

Compatibility Considerations
You are encouraged to change to the new uigetfile and uiputfile syntax.
The earlier syntaxes continue to be valid but may be removed in a later release.

Frames Not Available in GUIDE Layout Editor
The frame component no longer appears in the GUIDE Layout Editor
component palette. It has been replaced by the panel and button group
components. See “New Container Components” on page 249 for information
about these new components.
253

Creating Graphical User Interfaces (GUIs), MATLAB Version 7 (R14)

254
Compatibility Considerations
GUIDE continues to support frames in those GUIs that contain them, but it is
recommended that you replace them with panels or button groups.

MATLAB Release Notes
External Interfaces/API, MATLAB Version 7 (R14)
New features and changes introduced in this version are organized by these
topics:

• Importing and Exporting

• ActiveX and COM

• MATLAB Interface to Java

• General Features

Importing and Exporting

Saving Character Data with Unicode Encoding
The save function now saves character data to a MAT-file using Unicode
character encoding by default. You can use your system’s default character
encoding scheme instead by specifying the -v6 option with save.

Compatibility Considerations. MAT-files saved in MATLAB version 7.0 without
using the new -v6 flag will not be readable in previous versions of MATLAB.

Saving Data in Compressed Format
The save function now saves data to a MAT-file in a compressed format by
default.

Large File I/O for MEX-Files
MATLAB supports the use of 64-bit file I/O operations in your MEX-file
programs. This enables you to read and write data to files that are up to and
greater than 2 GB (2^31-1 bytes). Note that some operating systems or
compilers may not support files larger than 2 GB.

See “Large File I/O” in the External Interfaces documentation for more
information.
255

External Interfaces/API, MATLAB Version 7 (R14)

256
ActiveX and COM

Automatic Registration of Automation Server on Installation
When installing previous versions of MATLAB, system administrators also
had to run MATLAB at least once on each machine to register the Automation
server. In MATLAB 7.0, the MATLAB installation software does the
Automation server installation for you.

Support for Multiple COM Type Libraries
MATLAB now fully supports importing additional type libraries from within
an IDL file. Any COM object that depends on an imported type library is now
handled correctly.

COM Interface Supports Custom Interfaces
MATLAB now supports custom interfaces to a server component in
configurations where MATLAB is the client controlling an ActiveX control, or
an in-process or out-of-process server. For those COM components that
implement one or more custom interfaces, you can list the interfaces in
MATLAB using the new interfaces function:

h = actxserver('ComponentA.CustomObject')
h =
 COM.componenta.customobject

customlist = interfaces(h)
customlist =
 ICustomObject1
 ICustomObject2

Once you select the custom interface that you want, use the invoke function to
get a handle to it:

c1 = invoke(h, 'ICustomObject1')
c1 =
 Interface.componenta_Type_Library.ICustomObject1_Interface

MATLAB Release Notes
You can now use this handle with most of the COM client functions to access
the properties and methods of the object through this custom interface. For
example, to list the methods available through the ICustomObject1 interface,
use

invoke(c1)
 Add = double Add(handle, double, double)
 CustomMethod1 = HRESULT CustomMethod1(handle, int32)
 CustomMethod2 = HRESULT CustomMethod2(handle, int32)
 TripleAdd = [double, double] TripleAdd(handle, double, double)
 method3 = [string, int32, string, string] method3(
 handle, int16, int32, double, string)
 outin = [double, double, double, double] outin(
 handle, double, double)
 strings = string strings(handle, string)

You can read more about this feature in the section, “Getting Interfaces to the
Object” in the External Interfaces documentation.

COM Data Type Support for Scripting Languages
In previous versions of MATLAB, a COM client program written in VBScript
could not retrieve numeric data from or write data to the workspace of a
MATLAB client. This was because VBScript does not support the SAFEARRAY
data type used by MATLAB to pass numeric data to and from the server
workspace using the GetFullMatrix and PutFullMatrix functions.

Release 14 adds two new functions, GetWorkspaceData and PutWorkspaceData,
that pass data using the variant data type, a type that is supported by
VBScript. You can use these new functions to pass either numeric or string
data to any workspace in the COM server running MATLAB.

Refer to “Exchanging Data with the Server” in the External Interfaces
documentation.

Additional ProgIDs for Latest MATLAB Version
There are three additional COM programmatic identifiers (ProgIDs) in
MATLAB 7.0:

MATLAB.Autoserver
MATLAB.Autoserver.Single
MATLAB.Autoserver.7
257

External Interfaces/API, MATLAB Version 7 (R14)

258
Using any of these identifiers with the actxserver function guarantees that
the MATLAB server you create always runs the latest version of MATLAB
(version 7.0).

Note These new ProgIDs do not replace the MATLAB.Application identifier
used in previous versions of MATLAB. You can continue using this ProgID,
but there is no guarantee that actxserver will create a server running
MATLAB 7.0.

Connecting to an Existing MATLAB Server
Instead of having to create new instances of a MATLAB server, clients can
connect to an existing MATLAB automation server using the GetObject
command. This sample Visual Basic program connects to a running MATLAB
automation server, returning a handle h to that server. It then executes a
simple plot command in the server:

Dim h As Object

' Call GetObject (omit first argument).
Set h = GetObject(, "matlab.application")

' Handle h should be valid now. Test it by calling Execute
h.Execute ("plot([0 18], [7 23])")

Graphical Interface to Listing Available ActiveX Controls
The actxcontrollist function enables you to see what COM controls are
currently installed on your system. Type

list = actxcontrollist;

and MATLAB returns a list of each control, including its name, programmatic
identifier (or ProgID), and filename, in the output cell array.

Refer to “Finding Out What Controls Are Installed” in the External Interfaces
documentation.

MATLAB Release Notes
Graphical Interface to Creating ActiveX Controls
The simplest way to create a control object is to use the actxcontrolselect
function. This function displays a graphical interface that lists all controls
installed on the system and creates the one that you select from the list.
259

External Interfaces/API, MATLAB Version 7 (R14)

260
The actxcontrolselect interface has a selection panel at the left of the
window and a preview panel at the right. Click on one of the control names in
the selection panel to see a preview of the control displayed. (If MATLAB
cannot create the control, an error message is displayed in the preview panel.)
Select an item from the list and click the Create button.

Refer to “Creating Control Objects Using a Graphical Interface” in the External
Interfaces documentation.

MATLAB Release Notes
New Functions for the MATLAB COM Interface
There are five new COM client functions.

There are three new COM server functions. When invoked by a MATLAB or
Visual Basic client, these functions execute in the server associated with the
specified handle parameter.

See the function reference pages in the “External Interfaces Reference”
documentation for more information.

COM Interface Supports Dot Syntax in Commands
You can now use a simpler form of syntax when invoking either MATLAB COM
functions or methods belonging to COM objects. In this dot syntax (as it is
referred to in the MATLAB documentation), you specify the object name, a dot
(.), and then the name of the function or method you are calling. Enclose any
input arguments in parentheses after the function name. Specify output
arguments to the left of the equals sign:

outputvalue = object.function(arg1, arg2, ...)

Function Description

actxcontrollist List all currently installed ActiveX controls

actxcontrolselect Display graphical interface for creating an
ActiveX control

interfaces List custom interfaces to a COM server

iscom Determine if input is a COM or ActiveX object

isinterface Determine if input is a COM interface

Function Description

Feval Evaluate MATLAB function call in the server

GetWorkspaceData Get data from server workspace

PutWorkspaceData Store data in server workspace
261

External Interfaces/API, MATLAB Version 7 (R14)

262
For example, Release 13 syntax for invoking the addproperty function on a
COM object with handle h was

invoke(h, 'addproperty', 'Position');

You can now perform the same operation using

h.addproperty('Position');

The get and set operations are even simpler:

 ** R13 SYNTAX ** ** R14 SYNTAX **
x = get(h, 'Radius'); x = h.Radius;
set(h, 'Radius', 50); h.Radius = 50;

Refer to “Invoking Commands on a COM Object” in the External Interfaces
documentation.

Enumeration in COM Method Arguments
In addition to supporting enumeration for the properties of a COM object,
MATLAB now supports enumeration for parameters passed to methods of a
COM object. The only restriction is that the type library in use must report the
parameter as ENUM, and only as ENUM.

Refer to “Specifying Enumerated Parameters” in the External Interfaces
documentation.

MATLAB Release Notes
Event Handling for COM Servers
In addition to handling events from ActiveX controls, MATLAB now handles
events fired by Automation servers as well. Use the same event handling
functions that you have been using for events from controls.

Refer to “How to Prepare for and Handle Events from a COM Server” and
“Example — Responding to Events from an Automation Server” in the
External Interfaces documentation.

Callbacks to COM Event Handlers Written as Subfunctions
Instead of having to maintain a separate M-file for every event handler routine
you write, you can consolidate some or all of these routines into a single M-file
using M-file subfunctions.

Refer to “Writing Event Handlers Using M-File Subfunctions” in the External
Interfaces documentation.

Event Handlers Can Be Function Handles
In this release, you can now implement ActiveX event handlers as function
handles.

Function Description

eventlisteners Return a list of events attached to listeners

events List all events, both registered and unregistered,
a control or server can generate

isevent Determine if an item is an event of a COM object

registerevent Register an event handler with a control or server
event

unregisterallevents Unregister all events for a control or server

unregisterevent Unregister an event handler with a control or
server event
263

External Interfaces/API, MATLAB Version 7 (R14)

264
Optional Input Arguments to COM Methods
When calling a method that takes optional input arguments, you can skip any
optional argument by specifying an empty array ([]) in its place. The syntax
for invoke with the second argument (arg2) not specified is as follows:

invoke(handle, 'methodname', arg1, [], arg3);

See the section, “Optional Input Arguments” in the External Interfaces
documentation for more information.

Display of Interface Handles
MATLAB has changed the way it displays a COM interface in this release. For
example, the string used to represent an interface in MATLAB 6.5 was

[1x1 Interface.excel.application.Workbooks]

MATLAB 7.0 represents this same interface with the following string:

[1x1 Interface.Microsoft_Excel_9.0_Object_Library.Workbooks]

Compatibility Considerations. You may need to change any code that depends on
the previous behavior.

MATLAB Interface to Java

Java Interface Adds Dynamic Java Class Path
MATLAB loads Java class definitions from files that are on the Java class path.
The Java class path now consists of two segments: the static path, and a new
segment called the dynamic path.

The static path is loaded from the file classpath.txt at the start of each
MATLAB session and cannot be changed without restarting MATLAB. This
was the only path available in previous versions of MATLAB. Thus, there was
no way to change the Java path without restarting MATLAB.

The dynamic Java class path can be loaded at any time during a MATLAB
session using the javaclasspath function. You can define the dynamic path
(using javaclasspath), modify the path (using javaaddpath and javarmpath),
and refresh the Java class definitions for all classes on the dynamic path (using
clear java) without restarting MATLAB. See the function reference pages for
more information on how to use these functions.

MATLAB Release Notes
The javaclasspath function, when used with no arguments, displays both the
static and dynamic segments of the Java class path:

javaclasspath

 STATIC JAVA PATH

 D:\Sys0\Java\util.jar
 D:\Sys0\Java\widgets.jar
 D:\Sys0\Java\beans.jar
 .
 .

 DYNAMIC JAVA PATH

 User4:\Work\Java\ClassFiles
 User4:\Work\Java\mywidgets.jar
 .
 .

You can read more about this feature in the sections, “The Java Class Path”
and “Making Java Classes Available to MATLAB” in the External Interfaces
documentation.

Locating Java Native Method DLLs with File librarypath.txt
Previous versions of MATLAB required that you set a system environment
variable to enable Java to locate the shared libraries supporting any native
methods you need to use. This environment variable was PATH on Windows
systems, and LD_LIBRARY_PATH on UNIX systems. This is no longer necessary.

Now you can enter the names of those directories that contain native method
libraries in a new file called librarypath.txt using one line per directory. The
librarypath.txt file resides adjacent to the similar file classpath.txt in the
$matlab/toolbox/local directory.

General Features

New mx Functions
New functions mxIsInt64 and mxIsUint64 return true if an mxArray represents
its data as signed or unsigned 64-bit integers respectively.
265

External Interfaces/API, MATLAB Version 7 (R14)

266
Identifying Dependencies When MEX-Files Do Not Load
If MEX-files don't load on the PC the error message is not informative. The
dependency is a very useful tool distributed with MSVC. It is also freely
available from www.dependencywalker.com. In R15, we will incorporate some
kind of dependency walker into our MEX loader but for now, we will point users
to the web site.

Recompile MEX-Files on GLNX86 and Macintosh
In Release 14, MATLAB uses C++ exception handling. MEX-files built prior to
R14 did not support C++ exceptions.

For example, write a C MEX-file that just calls mexErrMsgTxt. If you build this
with a release prior to Release 14 and run it, the program aborts MATLAB. If
you build this with Release 14 and run it, MATLAB will handle the exception
correctly.

Compatibility Considerations. On GLNX86 and Macintosh systems, all MEX-files
that can throw errors need to be recompiled for R14.

Shared Libaries Now In /bin/$ARCH
Shared libraries previously residing in directory $MATLAB/extern/lib/$ARCH
are now in $MATLAB/bin/$ARCH.

Compatibility Considerations. You may need to change any code that depends on
the previous behavior.

MATLAB Release Notes
Version 6.5.1 (R13SP1)
MATLAB

This table summarizes what’s new in Version 6.5.1 (R13SP1):

New features and changes introduced in this version are organized by these
areas:

• MATLAB Interface to Generic DLLs

• Reading HDF5 Files

• Relational Operators Work with int64, uint64

• Reading and Writing Data with JPEG Lossless Compression

• Reading and Writing L*a*b* Color Data

MATLAB Interface to Generic DLLs
A shared library is a collection of functions that are available for use by one or
more applications running on a system. On Windows systems, the library is
precompiled into a dynamic link library (.dll) file. At run-time, the library is
loaded into memory and made accessible to all applications. The MATLAB
Interface to Generic DLLs enables you to interact with functions in dynamic
link libraries directly from MATLAB.

New Features
and Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related Documentation
at Web Site

Yes
Details below

Yes—Details in
Compatibility
Considerations. See
also Summary.

Fixed bugs No
267

268
Documentation
For help on this new feature, see “MATLAB Interface to Generic DLLs” in the
External Interfaces documentation.

The examples used in the documentation use library (.dll) and header (.h)
files located in the MATLABROOT\extern\examples\shrlib directory. To use
these example files, first add this directory to your MATLAB path with the
following command:

addpath([matlabroot '\extern\examples\shrlib'])

Or you can make this your current working directory with this command:

cd([matlabroot '\extern\examples\shrlib'])

Restrictions for This Release

• At this time, the MATLAB Interface to Generic DLLs is supported on
Windows systems only.

• Passing a void ** argument to a function in a dynamic link library is not
supported in this release.

• Passing a complex structure argument to a function in a dynamic link library
is not supported in this release. (The term complex structure argument refers
to a structure constructed from other structures.)

• Passing an array of pointers, is not supported in this release. An example of
an array of pointers is an array of strings.

• MATLAB does not support manipulation of pointers returned by functions in
a dynamic link library at this time. An example of this type of operation is
the addition or subtraction of pointers.

Function and Data Type Names in Generic DLL Interface
Minor changes have been made to the naming of some functions and data types
in the Generic DLL interface. If you are upgrading from the post-release 13
download of MATLAB, see “Function and Data Type Names in Generic DLL
Interface” on page 289 of these release notes.

Reading HDF5 Files
This release includes support for reading files that use the Hierarchical Data
Format, Version 5 (HDF5). HDF5 is a product of the National Center for

MATLAB Release Notes
Supercomputing Applications (NCSA). The NCSA develops software and file
formats for scientific data management.

This section includes this information:

• An overview of the structure of an HDF5 file

• Determining the contents of an HDF5 file

• Reading data from an HDF5 file

• Mapping HDF5 data types to MATLAB data types

Note MATLAB has supported reading and writing HDF files for several
releases. The HDF and HDF5 specifications are not compatible.

Overview of HDF5 File Structure
HDF 5 files can contain multiple datasets. A dataset is a multidimensional
array of data elements. Datasets can have associated metadata. HDF5 files
store the datasets and attributes in a hierarchical structure, similar to a
directory structure. The directories in the hierarchy are called groups. A group
can contain other groups, datasets, attributes, links, and data types.

To illustrate this structure, the following figure shows the contents of the
sample HDF5 file included with MATLAB, example.h5.
269

270
Figure 0-1: Hierarchical Structure of example.h5 HDF5 File

Determining the Contents of an HDF5 File
To extract an attribute or dataset from an HDF5 file, you must know the name
of the attribute or dataset. You specify the name as an argument to the
hdf5read function, described in “Reading Data from an HDF5 File” on
page 272.

To find the names of all the datasets and attributes contained in an HDF5 file,
you can use the hdf5info function. For example, to find out what the sample
HDF5 file, example.h5, contains, use this syntax.

fileinfo = hdf5info('example.h5');

The fileinfo structure returned by hdf5finfo contains various information
about the HDF5 file, including the name of the file and the version of the HDF5
library that MATLAB is using.

/

/g1 /g2

/g1/g1.1 /g1/g1.2

/g1/g1.1/dset1.1.1

/g2/dset2.1 /g2/dset2.2

/g1/g1.1/dset1.1.2 /g1/g1.2/g1.2.1

slink

/attr1 /attr2

= Dataset

= Group

= Attribute

= Link

/g1/g1.1/dset1.1.1/attr1 /g1/g1.1/dset1.1.1/attr2

MATLAB Release Notes
fileinfo =
Filename: 'example.h5'

 LibVersion: '1.4.2'
 Offset: 0
 FileSize: 8172
 GroupHierarchy: [1x1 struct]

To explore the contents of the file, examine the GroupHierarchy field.

level1 = fileinfo.GroupHierarchy

level1 =

 Filename: 'C:\matlab\toolbox\matlab\demos\example.h5'
 Name: '/'
 Groups: [1x2 struct]
 Datasets: []
 Datatypes: []
 Links: []
 Attributes: [1x2 struct]

The GroupHierarchy structure describes the top-level group in the file, called
the root group. HDF5 uses the UNIX convention and names this top-level
group / (forward slash), as seen in the Name field. The other fields in the
structure describe the contents of the group. In the example, the root group
contains two groups and two attributes. All the other fields, such as the
Datasets field, are empty. To traverse further down the file hierarchy, look at
one of the structures in the Groups field.

level2 = level1.Groups(2)

level2 =

 Filename: 'C:\matlab\toolbox\matlab\demos\example.h5'
 Name: '/g2'
 Groups: []
 Datasets: [1x2 struct]
 Datatypes: []
 Links: []
 Attributes: []
271

272
In this group, the Groups field is empty and the Datasets field contains two
structures. To get the names of the datasets, examine the Name field of either
of these Dataset structures. This structure provides other information about
the dataset including how many dimensions it contains (Dims) and the data
type of the data in the dataset (Datatype).

dataset1 = level2.Datasets(1)

dataset1 =

 Filename: 'L:\matlab\toolbox\matlab\demos\example.h5'
 Name: '/g2/dset2.1'
 Rank: 1
 Datatype: [1x1 struct]
 Dims: 10
 MaxDims: 10
 Layout: 'contiguous'
 Attributes: []
 Links: []
 Chunksize: []
 Fillvalue: []

Reading Data from an HDF5 File
To read an HDF5 file, use the hdf5read function, specifying the name of the file
and the name of the dataset as arguments. For information about finding the
name of a dataset, see “Determining the Contents of an HDF5 File” on
page 270.

For example, to read the dataset, /g2/dset2.1 from the HDF5 file example.h5,
use this syntax:

data = hdf5read('example.h5','/g2/dset2.1');

MATLAB Release Notes
The return value data, contains the values in the dataset, in this case a 1-by-10
vector of single precision values.

data =

 Columns 1 through 8

 1.0000 1.1000 1.2000 1.3000 1.4000 1.5000
1.6000 1.7000

 Columns 9 through 10

 1.8000 1.9000

Mapping HDF5 Data Types to MATLAB Data Types
The hdf5read function maps HDF5 data types to MATLAB data types,
depending on whether the data in the dataset is in an atomic data type or a
non-atomic data type.

HDF5 Atomic Data Types. If the data in the dataset is stored in one of the HDF5
atomic data types, hdf5read uses the equivalent MATLAB data type to
represent the data. Each dataset contains a Datatype field that names the data
type. For example, the dataset /g2/dset2.2 in the sample HDF5 file includes
this data type information.

dtype = dataset1.Datatype
dtype =

 Name: []
 Class: 'H5T_IEEE_F32BE'
 Elements: []

The H5T_IEEE_F32BE class name indicates the data is a four-byte, big-endian,
IEEE floating point data type. (See the HDF5 specification for more
information about atomic data types.)

HDF5 Non-Atomic Data Types. If the data in the dataset is stored in one of the
HDF5 non-atomic data types, hdf5read represents the dataset in MATLAB as
an object. To access the data in the dataset, you must access the Data field in
the object.
273

274
To illustrate, this example uses hdf5read to read a dataset called /dataset2
from the HDF5 file, my_hdf5_file.h5. The dataset contains four elements;
each element is an HDF5 array.

data = hdf5read('my_hdf5_file.h5','/dataset2');

In MATLAB, the hdf5read function creates a a 1x4 array of hdf5.h5array
objects to represent this data.

whos

Name Size Bytes Class

data 1x4 hdf5.h5array

Grand total is 4 elements using 0 bytes

Index into the MATLAB array to view the first element in the dataset.

data(1)

hdf5.h5array:

Name: ''
Data: [4x5x3 int32]

MATLAB Release Notes
To look at the raw data in the HDF5 array element, access the Data field in the
object.

data(1).Data

ans(:,:,1) =
0 1 2 3 4
10 11 12 13 14
20 21 22 23 24
30 31 32 33 34

ans(:,:,2) =
100 101 102 103 104
110 111 112 113 114
120 121 122 123 124
130 131 132 133 134

ans(:,:,3) =
200 201 202 203 204
210 211 212 213 214
220 221 222 223 224 230 231 232 233 234

The hdf5read function uses any of the following objects to represent HDF5
non-atomic data types.

• hdf5.h5array
• hdf5.h5enum
• hdf5.h5vlen
• hdf5.h5compound
• hdf5.h5string

Relational Operators Work with int64, uint64
All relational operators such as, <, >, <=, >=, ~=, and == now support int64 and
uint64 data types.

Reading and Writing Data with JPEG Lossless
Compression
MATLAB now supports reading and writing data that has been compressed
using JPEG lossless compression. With lossless compression, you can recover
275

276
the original image from its compressed form. Lossless compression, however,
achieves lower compression ratios than its counterpart, lossy compression.

Using the imread function, you can read data that has been compressed using
JPEG lossless compression.

Using the imwrite function, you can write data to a JPEG file using lossless
compression. For the imwrite function, you specify the Mode parameter with
the 'lossless' value.

Reading and Writing L*a*b* Color Data
The imread function can now read color data that uses the L*a*b* color space
from TIFF files. The TIFF files can contain L*a*b* values that are in 8-bit or
16-bit CIELAB encodings or in 8-bit or 16-bit ICCLAB encodings.

If a file contains 8-bit or 16-bit CIELAB data, imread automatically converts
the data into 8-bit or 16-bit ICCLAB encoding. The 8-bit or 16-bit CIELAB data
cannot be represented as a MATLAB array because it contains a combination
of signed and unsigned values.

The imwrite function can write L*a*b* data to a file using either the 8-bit or
16-bit CIELAB encoding or the 8-bit or 16-bit ICCLAB encoding. You select the
encoding by specifying the value of the ColorSpace parameter.

MATLAB Release Notes
Fixed Bugs
MATLAB 6.5.1 includes these major bug fixes:

• “Seeking Within a File” on page 277

• “Reshaping to More Than Two Dimensions” on page 277

• “mkdir No Longer Fails On Windows NT” on page 278

• “Using sqrt with Complex Input” on page 278

• “Multiplying Matrices with Non-Double Entries” on page 278

• “Sorting a Sparse Row Vector or Matrix” on page 278

• “diff Produces Correct Results with Logical Inputs” on page 279

• “Opening Modal Dialog with Third-Party GUI Open” on page 279

• “Serial Port Object with Latest Windows Service Pack” on page 279

• “OpenGL Problem Using Notebook” on page 279

• “Lcc C Compiler Fixed to Handle Large C Files” on page 279

• “Bug Fixes in MATLAB Interface to COM” on page 280

• “Bug Fixes in Creating GUIs” on page 286

Note In addition to the bug fixes described on this page, there are several
bug fixes relating to MATLAB mathematics that are documented in a
separate HTML bug-fix report.

Seeking Within a File
In Release 13, when you opened a file in write-only ('wb') mode, you could not
seed to a position in the file without first seeking to the beginning of the file.
The fseek function has been fixed to allow seeking from any position of the file.

Reshaping to More Than Two Dimensions
In Release 13, under certain circumstances, reshaping an array to have more
than two dimensions produced a two dimensional result. This has been
corrected.
277

Fixed Bugs

278
mkdir No Longer Fails On Windows NT
In Release 13, if on Windows NT you called the dir, exist, isdir, or what
function on a nonexistent directory name on a network drive, it caused a
windows handle to remain open to that directory name until you exit the
MATLAB session. This condition caused any attempts to use mkdir on that
directory to fail. This problem also affected the mkdir command when run from
a DOS command prompt. This condition would persist until you exited
MATLAB, thus freeing the handle.

This bug is fixed in this release.

Using sqrt with Complex Input
In Release 13, under certain circumstances, the sqrt function incorrectly
produced a real result when called with a complex input. This bug has been
corrected.

Multiplying Matrices with Non-Double Entries
In Release 13, MATLAB gave an incorrect answer or crashed for expressions of
the following forms:

• A' * B
• A * B'
• A' * B'
• A.' * B
• A * B.'
• A.' * B.'
• A' * B.'
• A.' * B'

when either A or B was a numeric, non-double value (single, int32, etc.). This
has been fixed for this release.

Sorting a Sparse Row Vector or Matrix
In Release 13, a segmentation violation occurred when you used the command
sort(S,2) to sort a sparse row vector or to sort a sparse matrix along its rows.
This bug is fixed in this release.

MATLAB Release Notes
diff Produces Correct Results with Logical Inputs
In Release 13, the diff function could produce an incorrect result when you
passed a logical array to it. This bug is fixed in this release.

Opening Modal Dialog with Third-Party GUI Open
In Release 13, MATLAB would occasionally hang if the user tried to open a
modal dialog box when a third-party GUI was open. This no longer happens.

Serial Port Object with Latest Windows Service
Pack
Under certain hardware configurations, or when using the latest Service Pack
from Microsoft Windows, the serial port object in both MATLAB and the
Instrument Control Toolbox could cause MATLAB to crash or hang. This
problem is resolved in this release.

Several additional problems affecting the serial port have also been identified
and fixed:

1 The serial port object now obeys all supported parity configurations.

2 The serial port object now obeys all supported flow control configurations.

3 On Windows, serial ports higher than COM8 were not recognized by
MATLAB. As of this release, MATLAB supports up to 256 ports.

4 The serial port object generates output empty events after running the serial
port object continuously.

OpenGL Problem Using Notebook
This version of MATLAB uses an improved algorithm for selecting pixel
formats when using the UseGenericOpenGL feature on Windows. This
improvement fixes rendering problems seen with Notebook.

For information on graphics rendering, see Tech Note 1201.

Lcc C Compiler Fixed to Handle Large C Files
Lcc version 2.4.1 MathWorks patch 1.29 corrects a bug encountered when
compiling very large C files. Although this bug has only been observed when
279

Fixed Bugs

280
using large Stateflow® models, we suggest that you upgrade to the new version
to avoid potential problems when compiling MEX-files.

If you choose not to upgrade your version of Lcc, you can select a different C
compiler using mex -setup from the MATLAB command line.

Bug Fixes in MATLAB Interface to COM
This release includes the following bug fixes in the COM interface:

• “Blank Spreadsheet Cells Returned as NaNs” on page 280

• “Importing Excel Worksheets Containing Currency Format” on page 281

• “Getting the Forms Font Interface” on page 281

• “Programmatic Identifiers Containing Space Characters” on page 281

• “Naming of Interfaces Returned by invoke or get” on page 281

• “Optional Input and Output Arguments Supported” on page 282

• “Memory Leak with MATLAB as COM Client” on page 282

• “Support for Multiple Type Libraries” on page 282

• “MATLAB Now Supports Skipping an Optional Argument” on page 283

• “Saving COM Objects Created with actxserver” on page 283

• “Creating Certain Servers That Do Not Have Type Libraries” on page 284

• “Creating Microsoft Controls” on page 285

• “ActiveX Controls Created with Visual Basic 6.0” on page 285

• “Type Mismatch Error Fixed” on page 285

Blank Spreadsheet Cells Returned as NaNs
When reading from a Microsoft Excel spreadsheet in a COM environment
where MATLAB is the COM client and Excel the server, MATLAB now returns
any empty cells in the spreadsheet as NaNs. In MATLAB 6.5 (Release 13), this
same operation had returned a matrix of empty ([]) values.

MATLAB Release Notes
For example, if the range A1 to D3 in a currently active workbook sheet contains
no data, MATLAB 6.5.1 returns the following matrix of NaN values:

eActiveSheet = get(e, 'ActiveSheet');
eActiveSheetRange = get(eActiveSheet, 'Range', 'A1', 'D3');

eActiveSheetRange.Value
ans =
 [NaN] [NaN] [NaN] [NaN]
 [NaN] [NaN] [NaN] [NaN]
 [NaN] [NaN] [NaN] [NaN]

Importing Excel Worksheets Containing Currency Format
In MATLAB 6.5, using a COM interface to Excel to import worksheet data
containing currency format failed with either a field access error or
segmentation violation. This bug is fixed in this release.

Getting the Forms Font Interface
In MATLAB 6.5, attempts to get the Font interface from a forms.textbox.1
control, as done in the second line below, caused MATLAB to crash.

h=actxcontrol('forms.textbox.1')
font = h.Font

This bug is fixed in this release.

Programmatic Identifiers Containing Space Characters
Using the actxcontrol function with a ProgID argument containing one or
more spaces failed in MATLAB 6.5. This bug is fixed in this release. For
example, the following command now works:

h = actxcontrol('rmocx.RealPlayer G2 Control.1')
h =
 COM.rmocx.realplayer g2 control.1

Naming of Interfaces Returned by invoke or get
In MATLAB 6.5, interfaces returned by the invoke and get functions were
given a name composed of the programmatic identifier (ProgID) for the
component and the name of the method or property being invoked. In cases
281

Fixed Bugs

282
where a method or property implemented multiple interface types, this naming
algorithm resulted in interface names that were not always unique.

For example, when invoking a method that returns an Excel and a Word
interface, you could obtain any number of either type of interface (Excel or
Word), but you could not obtain interfaces of both types. In such cases, you
might be unable to access methods and properties of this interface.

In this release, interface names constructed by MATLAB are composed of the
name of the type library and the class name, thus ending this potential naming
conflict. If you invoke the method described in the last paragraph, MATLAB
now returns the following for any Excel interfaces that you request:

Interface.Microsoft_Excel_9.0_Object_Library._Application

And MATLAB returns a different handle for Word interfaces:

Interface.Microsoft_Word_9.0_Object_Library._Application

Optional Input and Output Arguments Supported
MATLAB now supports optional input and output arguments passed in COM
method calls. These arguments are declared as [in, optional] and [out,
optional] respectively.

Memory Leak with MATLAB as COM Client
In Version 6.5, a memory leak developed under certain circumstances when
MATLAB was configured as a COM client. This was caused by internal
MATLAB code failing to release memory allocated by the method
StringFromCLSID. This bug is fixed in this release.

Support for Multiple Type Libraries
MATLAB now supports multiple type libraries. If a COM object has many
interfaces that are described in multiple type libraries, MATLAB can now
retrieve the information correctly.

MATLAB Release Notes
MATLAB Now Supports Skipping an Optional Argument
When calling ActiveX automation server methods, you can skip any optional
arguments in the argument list by specifying that argument value as an empty
matrix ([]). For example, the Add method shown below accepts as many as four
optional arguments:

Add(Before, After, Count, Type)

To call this method, specifying values for After and Count, but no values for
Before or Type, use this syntax.

addedsheet = invoke(Sheets, 'Add', [], Sheet1, 5);

Use [] for any arguments you skip, and that also precede the ones you do
specify in the argument list. In this case, the Before argument is not specified
but two subsequent arguments are.

Saving COM Objects Created with actxserver
Release 13 does not support saving COM objects that have been created with
the actxserver function. You can use save only on control objects (created with
actxcontrol). Attempting to use save on a COM server object causes MATLAB
to hang temporarily, and eventually crash.

This bug has been fixed in this release so that if you now attempt to save a
COM server object, MATLAB saves the object and any base properties of the
object, but does not attempt to save any interfaces that might exist.

The same behavior applies to the pack function on COM objects.
283

Fixed Bugs

284
This example creates a server running Microsoft Excel, adds a new property to
the object, and saves it to the file excelserver.mat. It then reloads the server
from the MAT-file.

e = actxserver ('Excel.Application');
addproperty(e, 'NewProperty');
set(e, 'NewProperty', 500);
get(e, 'NewProperty')
ans =
 500

save('excelserver.mat')
clear
get(e, 'NewProperty')
??? Undefined function or variable 'e'.

load('excelserver.mat')
get(e, 'NewProperty')
ans =
 500

Creating Certain Servers That Do Not Have Type Libraries
In the Release 12.1 and Release 13 releases, the actxserver function
generated an error when attempting to create a COM object for certain servers.
One error commonly returned by actxserver in these releases was

h = actxserver('msdev.application')
??? Error using ==> actxserver
Cannot find type library. COM object creation failed.

This has now been fixed in this release.

h = actxserver('msdev.application')
h =
 COM.msdev.application

MATLAB Release Notes
Creating Microsoft Controls
Earlier versions of MATLAB would crash if you attempted to create certain
Microsoft COM controls with the actxcontrol function. Examples of these
controls, by programmatic identifier (ProgID), are shown below. MATLAB now
successfully creates the controls.

mschart20lib.mschart msdatalistlib.datacombo
msdatagridlib.datagrid MSComCtl2.DTPicker.2
msdatalistlib.datalist MSHierarchicalFlexGridLib.MSHFlexGrid.6

ActiveX Controls Created with Visual Basic 6.0
In Release 13, if you attach a callback routine to an event, and this event is
eventually fired by a control created in Visual Basic 6.0, an error dialog box
appears with the message “Run-Time error.”

This has been fixed in this release.

Type Mismatch Error Fixed
Some COM objects may define methods that pass scalar inputs by reference.
This might appear in a type library signature as shown here for the x input:

functionname(double *x, [out] double *y)

Note that when input or output is not specifically stated, as is the case here for
x, MATLAB defaults to input ([in]). So the line shown above is interpreted by
MATLAB as

functionname([in] double *x, [out] double *y)

In MATLAB, the [in] and by-reference (*) specifications are considered
incompatible for scalar arguments. In Release 13, MATLAB ignores the
by-reference specifier for scalar inputs and passes such arguments by value
instead. Thus, any modified value for such an argument is not received by the
calling function. You may also see a type mismatch error displayed, even when
trying to access valid control methods.

MATLAB 6.5.1 fixes this bug by treating the [in] specifier for scalar references
as if it were [in,out].
285

Fixed Bugs

286
In this example using MATLAB syntax, the GetWinVersionX function passes
six double arguments by reference, yet none are returned in MATLAB 6.5:

GetWinVersionX = int32 GetWinVersionX(
 handle, double, double, double, double, double, double)

In MATLAB 6.5.1, all scalar reference arguments specified (or defaulting to)
[in] are treated as [in,out], and all references cause a value to be returned:

GetWinVersionX = [int32, double, double, double, double,
 double, double] GetWinVersionX(
 handle, double, double, double, double, double, double)

Note that this bug affects only scalar arguments. The VT_DISPATCH and
VT_VOID types are not affected.

Bug Fixes in Creating GUIs
This release includes the following bug fixes related to creating, converting,
and exporting GUIs:

• “Converting a MATLAB 5.3 GUI to MATLAB 6.5” on page 286

• “Using GUIDE on Existing GUIs with Empty Tag Property” on page 287

• “Exporting GUIs from GUIDE to a Single M-file” on page 287

• “MATLAB Hangs when Using Property Inspector from GUIDE” on page 287

• “Recursion Limit Error when Running Existing GUIs from GUIDE” on
page 288

Converting a MATLAB 5.3 GUI to MATLAB 6.5
Converting a MATLAB 5.3 (R11) GUI to MATLAB 6.5 sometimes resulted in
the error:

Unhandled internal error in guidemfile. Reference to non-existent
field 'blocking'

This problem has been fixed.

MATLAB Release Notes
Using GUIDE on Existing GUIs with Empty Tag Property
In MATLAB Version 6.5, editing a GUI that contained a uicontrol whose Tag
property was set to [] (empty) sometimes generated the following error
message:

Unhandled internal error in guidefunc.
Error using ==> set
Value must be a string

This problem has been fixed.

Exporting GUIs from GUIDE to a Single M-file
In MATLAB Version 6.5, some GUIs exported from GUIDE failed to open. In
other cases, attempting to export a GUI resulted in one of the following errors:

??? Error using ==> guidefunc
Error using ==> ==
Matrix dimensions must agree.

??? Error using ==> guidefunc
Error using ==> ==
Function '==' is not defined for values of class 'struct'.

These problems have been fixed.

MATLAB Hangs when Using Property Inspector from GUIDE
Using the Property Inspector from GUIDE sometimes caused MATLAB
Version 6.5 to hang. This problem has been fixed.
287

Fixed Bugs

288
Recursion Limit Error when Running Existing GUIs from GUIDE
In MATLAB Version 6.5, running some existing GUIs from GUIDE generated
the following error message:

??? Error using ==> guidefunc
Maximum recursion limit of 500 reached. Use
set(0,'RecursionLimit',N) to change the limit. Be aware that
exceeding your available stack space can crash MATLAB and/or
your computer.

Could not create figure:
127

This problem has been fixed.

MATLAB Release Notes
Compatibility Considerations
These changes might cause incompatibilities when you upgrade from an earlier
version, or when you use files on multiple versions.

Rebuild Macintosh MEX-files
Macintosh MEX-files (named .mex) built with MATLAB 5.2 or older will not
work with MATLAB 6.5 or later. You must recompile these files, creating a new
file with the file extension .mexmac.

Function and Data Type Names in Generic DLL
Interface
The following functions have been renamed since the initial download release
of the Generic DLL Interface:

• The libmethods function is now called libfunctions.

• The libmethodsview function is now called libfunctionsview.

All data types ending in Ref are now suffixed with Ptr. For example, doubleRef
is now called doublePtr, and int16Ref is now int16Ptr.

All data types ending in RefPtr are now suffixed with PtrPtr. For example,
doubleRefPtr is now called doublePtrPtr, and int16RefPtr is now
int16PtrPtr.
289

Compatibility Considerations

290

Compatibility Summary for
MATLAB

These tables summarize new features and changes that might cause
incompatibilities when you upgrade from an earlier version, or when you
use files on multiple versions. Details are provided with the description of
the new feature or change.

• Version 7.2 (R2006a) Compatibility Summary for MATLAB

• Version 7.1 (R14SP3) Compatibility Summary for MATLAB

• Version 7.04 (R14SP2) Compatibility Summary for MATLAB

• Version 7.01 (R14SP1) Compatibility Summary for MATLAB

• Version 7 (R14) Compatibility Summary for MATLAB

• Version 6.5.1 (R13SP3) Compatibility Summary for MATLAB

Version 7.2 (R2006a) Compatibility Summary for MATLAB

292
Version 7.2 (R2006a) Compatibility Summary for MATLAB
For other versions, see the Compatibility Summary for MATLAB.

Area New Features and Changes with Version Compatibility Impact

Desktop Tools and
Development
Environment

See the Compatibility Considerations subheading for each of these
new features or changes:

• Installation Directory Structure on Windows

• Preferences Reorganized and New Keyboard Pane Added to Support
Command Window and Editor/Debugger

• Go Menu Added; Bookmark and Go To Items Moved from Edit Menu
to Go Menu

• Cell Mode On by Default—Shows Cell Toolbar and Possibly
Horizontal Lines and Yellow Highlighting; Cell Information Bar and
Button Added

• M-Lint and mlint Enhancements and Changes

• Visual Directory View Removed from Current Directory Browser

• PVCS Source Control System Name Change

Mathematics None

Data Analysis See the Compatibility Considerations subheading for each of these
new features or changes:

• Linux 64 Platform Fully Enabled for Time Series Tools

Programming See the Compatibility Considerations subheading for each of these
new features or changes:

• Using avifile and movie2avi on Windows XP 64

• Regular Expressions

• MATLAB Warns on Invalid Input to str2func

• I/O Functions Can Specify and Use Character Encoding Schemes

MATLAB Release Notes
Graphics and 3-D
Visualization

None

Creating GUIs See the Compatibility Considerations subheading for each of these
new features or changes:

• Treatment of '&' in Menu Label Is Changed

External Interfaces See the Compatibility Considerations subheading for each of these
new features or changes:

• MEX-Files Built with gcc on Linux Must Be Rebuilt

• MEX-Files in MATLAB for Windows x64

• Compaq Visual Fortran Engine and MAT Options File Renamed

• Options Files Removed for Unsupported Compilers

• Obsolete Functions No Longer Documented

Area New Features and Changes with Version Compatibility Impact
293

Version 7.1 (R14SP3) Compatibility Summary for MATLAB

294
Version 7.1 (R14SP3) Compatibility Summary for MATLAB
For other versions, see the Compatibility Summary for MATLAB.

Area New Features and Changes with Version Compatibility Impact

Desktop Tools and
Development
Environment

See the Compatibility Considerations subheading for each of these
new features or changes:

• Windows -nodesktop No Longer has Menu Bar and Toolbar; Use
Function Equivalents Instead

• Preferences Directory Added for R14SP3; Supplements R14
Directory

• info.xml File Automatic Validation; Shows Warnings for Invalid
Constructs

• Hyperlink Color Preference Moved

• Demos Run in Command Window as Scripts and Their Variables
Now Created in Base Workspace

• echodemo Function Added to Replace playshow function

• Visual Directory View to be Removed

• HTML File Indenting Feature Added as the Default

• Notebook Setup Changes; Some Arguments Removed

• Word Versions Supported by Notebook; Word 97 No Longer
Supported

Mathematics See the Compatibility Considerations subheading for each of these
new features or changes:

• New Functions

Data Analysis None

MATLAB Release Notes
Programming See the Compatibility Considerations subheading for each of these
new features or changes:

• New Functions

• Modified Functions

• isfield Function Supports Cell Arrays; Results Might Differ from
Previous Version

• Seconds Field Now Truncated; Results Might DifferBuilt-in
Functions No Longer Use .bi; Impacts Output of which FunctionNew
Warning About Potential Naming Conflict

Graphics and 3-D
Visualization

None

Creating GUIs See the Compatibility Considerations subheading for each of these
new features or changes:

• Plans for Obsolete Functions

External Interfaces See the Compatibility Considerations subheading for each of these
new features or changes:

• New File Extension for MEX-Files on Windows

• New Preferences Directory and MEX Options

• Compiler Support

• Import Libraries Moved

Area New Features and Changes with Version Compatibility Impact
295

Version 7.04 (R14SP2) Compatibility Summary for MATLAB

296
Version 7.04 (R14SP2) Compatibility Summary for MATLAB
For other versions, see the Compatibility Summary for MATLAB.

Area New Features and Changes with Version Compatibility Impact

Desktop Tools and
Development
Environment

See the Compatibility Considerations subheading for each of these
new features or changes:

• JVM Updated

• Subfunction Help Syntax Changed

• Bug Fixes and Known Problems Now on Web; No Longer Found Via
Help Search

• Workspace Browser Preference Panel Removed

• Preference for Editor/Debugger Dialog Moved

• Register Project Feature Added; Add to Source Control Behavior
Changed

• Cell Publishing: File Extension Changes

• Notebook Support for Word 97 to be Discontinued

Mathematics See the Compatibility Considerations subheading for each of these
new features or changes:

• max and min on Complex Integers Not Supported

Programming See the Compatibility Considerations subheading for each of these
new features or changes:

• xlsread Imported Date Format Changes

• Nonscalar Arrays of Function Handles to Become Invalid

• Assigning Nonstructure Variables As Structures Displays Warning

MATLAB Release Notes
Graphics and 3-D
Visualization

See the Compatibility Considerations subheading for each of these
new features or changes:

• Cannot Dock Figures on Macintosh

• Plotting Tools Not Working on Macintosh

• Not All Macintosh System Fonts Are Available

• XDisplay Property Setable on Motif-Based Systems

Creating GUIs None

External Interfaces None

Area New Features and Changes with Version Compatibility Impact
297

Version 7.01 (R14SP1) Compatibility Summary for MATLAB

298
Version 7.01 (R14SP1) Compatibility Summary for MATLAB
For other versions, see the Compatibility Summary for MATLAB.

Area New Features and Changes with Version Compatibility Impact

Desktop Tools and
Development
Environment

See the Compatibility Considerations subheading for each of these
new features or changes:

• Constructing Java Classpath Now Uses librarypath

• Notebook Support for Word 97 to Be Discontinued

Mathematics See the Compatibility Considerations subheading for each of these
new features or changes:

• Different Results When Solving Singular Linear Systems on Intel
Systems; Inconsistent NaN Propagation

• funm Returns Status Information; New Output Might Result In Error

Programming See the Compatibility Considerations subheading for each of these
new features or changes:

• datevec Support of Empty String Argument

• ftell Returning Invalid Position in Rare Cases

• Logical OR Operator | in regexp Expressions Might Yield Different
Results from Previous Version

• Multiple Declarations of Persistent Variables No Longer Supported

Graphics and 3-D
Visualization

See the Compatibility Considerations subheading for each of these
new features or changes:

• Cannot Dock Figures on Macintosh

• Plotting Tools Not Working on Macintosh

• Not All Macintosh System Fonts Are Available

• Preview Java Figures on the Macintosh

MATLAB Release Notes
Creating GUIs See the Compatibility Considerations subheading for each of these
new features or changes:

• FIG-File Format Change

• Panels, Button Groups, and ActiveX Components

• Windows XP Display of Push and Toggle Buttons

External Interfaces See the Compatibility Considerations subheading for this new feature
or change:

• Specifying the Search Path for Java Native Method DLLs

Area New Features and Changes with Version Compatibility Impact
299

Version 7 (R14) Compatibility Summary for MATLAB

300
Version 7 (R14) Compatibility Summary for MATLAB
For other versions, see the Compatibility Summary for MATLAB.

MATLAB Release Notes
Area New Features and Changes with Version Compatibility Impact

Desktop Tools and
Development
Environment

See the Compatibility Considerations subheading for each of these
new features or changes:

• terminal Function Removed

• license Function Results Modified Slightly

• Tab Completion Graphical Interface Added; Removed Preference to
Limit Completions

• Parentheses Matching Support Removed

• Documentation Now Automatically Installed; Not Accessible from
CD-ROMs and docroot Not Supported

• web Function Now Opens MATLAB Web Browser By Default

• HTML Documentation Not Viewable with -nojvm Startup Option

• Built-In Functions Now Treated Like Other M-Files on Search Path

• savepath Function Added to Replace path2rc

• Create Block Comments Using %{ and %}

• dbstack Function Supports Nested Functions

• dbstatus Function Supports Conditional Breakpoints

• Rapid Code Iteration Using Cells

• Profiler for Measuring Performance

• Source Control Changes
301

Version 7 (R14) Compatibility Summary for MATLAB

302
Mathematics See the Compatibility Considerations subheading for each of these
new features or changes:

• Obsolete Functions

• Integer Data Type Functions Now Round Instead of Truncate

• Changes to Behavior of Concatenation

• New Class Inputs for sum

• max and min Now Have Restrictions on Inputs of Different Data
Types

• Matrix, Trigonometric, and Other Math Functions No Longer Accept
Inputs of Type char

• New Names for Demos expm1, expm2, and expm3

Area New Features and Changes with Version Compatibility Impact

MATLAB Release Notes
Programming See the Compatibility Considerations subheading for each of these
new features or changes:

• MATLAB Stores Character Data As Unicode; Making Release 14
MAT-files Readable in Earlier Versions

• MAT-Files Generated By Release 14 Beta2 Must Be Reformatted

• Additional Bytes Reserved in MAT-File Header; Do Not Write To
Reserved Space

• Case-Sensitivity in Function and Directory Names; Can Affect Which
Function MATLAB Selects

• Differences Between Built-Ins and M-Functions Removed; Can Affect
Which Function MATLAB Selects

• Change to How evalin Evaluates Dispatch Context

• New Calling Syntax for Function Handles; Replace eval With New
Syntax

• Arrays of Function Handles

• Regular Expressions Accept String Vector; No Longer Support
Character Matrix Input

• Colon Operator on char Now Returns a char

• Reading Date Values with xlsread; Conversion No Longer Necessary

• Changes to Error Message Format

3-D Graphics and
Visualization

See the Compatibility Considerations subheading for each of these
new features or changes:

• Plotting Tools Not Working on Macintosh

• Using -nojvm Option Prevents Plotting Tools Use

• MATLAB 6 Version Property Editor

• Cannot Dock Figures on Macintosh

• Not All Macintosh System Fonts Are Available

Area New Features and Changes with Version Compatibility Impact
303

Version 7 (R14) Compatibility Summary for MATLAB

304
Creating GUIs See the Compatibility Considerations subheading for each of these
new features or changes:

• New Container Components

• New Syntax for uigetfile and uiputfile

• Frames Not Available in GUIDE Layout Editor

External Interfaces See the Compatibility Considerations subheading for each of these
new features or changes:

• Saving Character Data with Unicode Encoding

• Display of Interface Handles

• Recompile MEX-Files on GLNX86 and Macintosh

• Shared Libaries Now In /bin/$ARCH

Area New Features and Changes with Version Compatibility Impact

MATLAB Release Notes
Version 6.5.1 (R13SP3) Compatibility Summary for
MATLAB

For other versions, see the Compatibility Summary for MATLAB.

New Features and Changes with Version Compatibility Impact

The compatibility considerations are

• Rebuild Macintosh MEX-files

• Function and Data Type Names in Generic DLL Interface
305

	Summary by Version
	Version 7.2 (R2006a) MATLAB
	Desktop Tools and Development Environment, MATLAB Version 7.2 (R2006a)
	Mathematics, MATLAB Version 7.2 (R2006a)
	Data Analysis, MATLAB Version 7.2 (R2006a)
	Programming, MATLAB Version 7.2 (R2006a)
	Graphics and 3-D Visualization, MATLAB Version 7.2 (R2006a)
	Creating Graphical User Interfaces (GUIs), MATLAB Version 7.2 (R2006a)
	External Interfaces/API, MATLAB Version 7.2 (R2006a)

	Version 7.1 (R14SP3) MATLAB
	Desktop Tools and Development Environment, MATLAB Version 7.1 (R14SP3)
	Mathematics, MATLAB Version 7.1 (R14SP3)
	Data Analysis, MATLAB Version 7.1 (R14SP3)
	Programming, MATLAB Version 7.1 (R14SP3)
	Graphics and 3-D Visualization, MATLAB Version 7.1 (R14SP3)
	Creating Graphical User Interfaces (GUIs), MATLAB Version 7.1 (R14SP3)
	External Interfaces/API, MATLAB Version 7.1 (R14SP3)

	Version 7.0.4 (R14SP2) MATLAB
	Desktop Tools and Development Environment, MATLAB Version 7.0.4 (R14SP2)
	Mathematics, MATLAB Version 7.0.4 (R14SP2)
	Programming, MATLAB Version 7.0.4 (R14SP2)
	Graphics and 3-D Visualization, MATLAB Version 7.0.4 (R14SP2)
	Creating Graphical User Interfaces (GUIs), MATLAB Version 7.0.4 (R14SP2)
	External Interfaces/API, MATLAB Version 7.0.4 (R14SP2)

	Version 7.0.1 (R14SP1) MATLAB
	Desktop Tools and Development Environment, MATLAB Version 7.0.1 (R14SP1)
	Mathematics, MATLAB Version 7.0.1 (R14SP1)
	Programming, MATLAB Version 7.0.1 (R14SP1)
	Graphics, MATLAB Version 7.0.1 (R14SP1)
	Creating Graphical User Interfaces (GUIs), MATLAB Version 7.0.1 (R14SP1)
	External Interfaces/API, MATLAB Version 7.0.1 (R14SP1)

	Version 7 (R14) MATLAB
	Desktop Tools and Development Environment, MATLAB Version 7 (R14)
	Mathematics, MATLAB Version 7 (R14)
	Programming, MATLAB Version 7 (R14)
	Graphics and 3-D Visualization, MATLAB Version 7 (R14)
	Creating Graphical User Interfaces (GUIs), MATLAB Version 7 (R14)
	External Interfaces/API, MATLAB Version 7 (R14)

	Version 6.5.1 (R13SP1) MATLAB
	Fixed Bugs
	Compatibility Considerations

	Compatibility Summary for MATLAB
	Version 7.2 (R2006a) Compatibility Summary for MATLAB
	Version 7.1 (R14SP3) Compatibility Summary for MATLAB
	Version 7.04 (R14SP2) Compatibility Summary for MATLAB
	Version 7.01 (R14SP1) Compatibility Summary for MATLAB
	Version 7 (R14) Compatibility Summary for MATLAB
	Version 6.5.1 (R13SP3) Compatibility Summary for MATLAB

